Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044701    DOI: 10.1088/1674-1056/abcf4b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method

Minglei Shan(单鸣雷)1,†, Yu Yang(杨雨)1, 2, Xuemeng Zhao(赵雪梦)1, Qingbang Han(韩庆邦)1, and Cheng Yao(姚澄)1
1 Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China; 2 College of Computer and Information, Hohai University, Nanjing 210000, China
Abstract  The interaction between cavitation bubble and solid surface is a fundamental topic which is deeply concerned for the utilization or avoidance of cavitation effect. The complexity of this topic is that the cavitation bubble collapse includes many extreme physical phenomena and variability of different solid surface properties. In the present work, the cavitation bubble collapse in hydrophobic concave is studied using the pseudopotential multi-relaxation-time lattice Boltzmann model (MRT-LB). The model is modified by involving the piecewise linear equation of state and improved forcing scheme. The fluid-solid interaction in the model is employed to adjust the wettability of solid surface. Moreover, the validity of the model is verified by comparison with experimental results and grid-independence verification. Finally, the cavitation bubble collapse in a hydrophobic concave is studied by investigating density field, pressure field, collapse time, and jet velocity. The superimposed effect of the surface hydrophobicity and concave geometry is analyzed and explained in the framework of the pseudopotential LBM. The study shows that the hydrophobic concave can enhance cavitation effect by decreasing cavitation threshold, accelerating collapse and increasing jet velocity.
Keywords:  cavitation bubble      hydrophobic concave      lattice Boltzmann model      pseudopotential model  
Received:  10 September 2020      Revised:  28 October 2020      Accepted manuscript online:  01 December 2020
PACS:  47.11.Qr (Lattice gas)  
  47.55.Ca (Gas/liquid flows)  
  47.55.dd (Bubble dynamics)  
  47.55.dp (Cavitation and boiling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874140 and 11574072), the Fund from the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201913), the National Key Research and Development Program of China (Grant No. 2016YFC0401600), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant Nos. 2018B741X14 and KYCX18\textunderscore 0552).
Corresponding Authors:  Corresponding author. E-mail: shanming2003@126.com   

Cite this article: 

Minglei Shan(单鸣雷), Yu Yang(杨雨), Xuemeng Zhao(赵雪梦), Qingbang Han(韩庆邦), and Cheng Yao(姚澄) Investigation of cavitation bubble collapse in hydrophobic concave using the pseudopotential multi-relaxation-time lattice Boltzmann method 2021 Chin. Phys. B 30 044701

1 Li D, Kang Y, Wang X C, Ding X L and Fang Z L 2016 Exp. Therm. Fluid Sci. 74 444
2 Li M D, Bussonni\`ere A, Bronson M, Xu Z H and Liu Q X 2019 Miner. Eng. 132 268
3 Belova V, Krasowska M, Wang D Y, Ralston J and Helmuth Möhwald 2013 Chem. Sci. 4 248
4 Wang Z D, Yang J F, Wei Y K and Qian Y H 2013 Chin. Phys. Lett. 30 094703
5 Xie H Q, Zeng Z and Zhang L Q 2016 Chin. Phys. B 25 014702
6 Zuo H, Deng S C and Li H B 2019 Chin. Phys. B 28 030202
7 Chai Z H and Shi B C 2020 Phys. Rev. E 102 023306
8 Shen L Y, Tang G H, Li Q and Yu S 2019 Langmuir 35 9430
9 Kang H Y, Louren\cco Sérgio D N and Yan W M 2018 Phys. Rev. E 98 012902
10 Gan Y, Xu A, Zhang G and Succi S 2015 Soft Matter 11 5336
11 Gan Y, Xu A, Zhang G, Zhang Y and Succi S 2018 Phys. Rev. E 97 053312
12 Ezzatneshan E 2017 Phys. Fluids 29 113304
13 Shan M L, Zhu C P, Yao C, Yin C and Jiang X Y 2016 Chin. Phys. B 25 104701
14 Shan M L, Zhu C P, Zhou X, Yin C and Han Q B 2016 J. Hydrodyn. Ser. B 28 442
15 Zhu Y P, Shan M L, Yang Y, Han Q B, Zhu C P and Zhang X W 2018 Appl. Sci. 8 940
16 Yang Y, Shan M L, Kan X F, Shangguan Y Q and Han Q B 2019 Ultrason. Sonochem. 62 104873
17 Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301
18 Li Q, Luo K H, Kang Q J and Chen Q 2014 Phys. Rev. E 90 053301
19 Shan X W and Chen H D 1993 Phys. Rev. E 47 1815
20 Qian Y, D'Humie\`res D, and Lallemand P 1992 Europhys. Lett. 17 479
21 Shizgal B D and Weave D P1992 Rarefied Gas Dynamics: Theoretical and Computational Techniques(AIAA, Washington, DC) pp. 450-458
22 Shan X W 2008 Phys. Rev. E 77 066702
23 Chai Z H, Shi B C and Guo Z L 2016 J. Sci. Comput. 69 355
24 Guo Z L, Zheng C G and Shi B C 2002 Phys. Rev. E 65 046308
25 Chai Z H and Zhao T S 2012 Phys. Rev. E 86 016705
26 Martys N S and Chen H 1996 Phys. Rev. E 53 743
27 Yuan P and Schaefer L 2006 Phys. Fluids 18 329
28 Colosqui C E, Falcucci G, Ubertini S and Succi S 2012 Soft Matter 8 3798
29 Li Q and Luo K H 2013 Phys. Rev. E 88 053307
30 Mohamad A2011 The Lattice Boltzamnn Method (New York: Springer International Publishing) pp. 155-175
31 Zou Q S and He X Y 1997 Phys. Fluids 9 1591
32 Maier R S, Bernard R S and Grunau D W 1996 Phys. Fluids 8 1788
[1] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[2] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[3] Relaxation-rate formula for the entropic lattice Boltzmann model
Weifeng Zhao(赵伟峰), Wen-An Yong(雍稳安). Chin. Phys. B, 2019, 28(11): 114701.
[4] A multicomponent multiphase lattice Boltzmann model with large liquid-gas density ratios for simulations of wetting phenomena
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2017, 26(8): 084701.
[5] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
[6] Study of acoustic bubble cluster dynamics using a lattice Boltzmann model
Mahdi Daemi, Mohammad Taeibi-Rahni, Hamidreza Massah. Chin. Phys. B, 2015, 24(2): 024302.
[7] Lattice Boltzmann simulation of liquid–vapor system by incorporating a surface tension term
Song Bao-Wei (宋保维), Ren Feng (任峰), Hu Hai-Bao (胡海豹), Huang Qiao-Gao (黄桥高). Chin. Phys. B, 2015, 24(1): 014703.
[8] Growth and collapse of laser-induced bubbles in glycerol--water mixtures
Liu Xiu-Mei(刘秀梅), He Jie(贺杰), Lu Jian(陆建), and Ni Xiao-Wu(倪晓武). Chin. Phys. B, 2008, 17(7): 2574-2579.
[9] The pressure field in the liquid column in the tube-arrest method
Ying Chong-Fu(应崇福), Li Chao(李超), Xu De-Long(徐德龙), and Deng Jing-Jun(邓京军) . Chin. Phys. B, 2008, 17(7): 2580-2593.
[10] CORRECTIONS TO THE COLLISION TERM IN THE BGK BOLTZMANN EQUATION
Feng Shi-de (冯士德), Ren Rong-cai (任荣彩), Cui Xiao-peng (崔晓鹏), Ji Zhong-zhen (季仲贞). Chin. Phys. B, 2001, 10(12): 1106-1109.
No Suggested Reading articles found!