Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 034704    DOI: 10.1088/1674-1056/23/3/034704
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Flow characterization and dilution effects of N2 and CO2 on premixed CH4/air flames in a swirl-stabilized combustor

Han Yue (韩乐)a, Cai Guo-Biao (蔡国飙)a, Wang Hai-Xing (王海兴)a, Renou Brunob, Boukhalfa Abdelkrimb
a School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
b UMR 6614 CORIA, INSA de Rouen, Avenue de l’Université, BP 08, 76801 Saint-Etienne du Rouvray, France
Abstract  Numerically-aided experimental studies are conducted on a swirl-stabilized combustor to investigate the dilution effects on flame stability, flame structure, and pollutant emissions of premixed CH4/air flames. Our goal is to provide a systematic assessment on combustion characteristics in diluted regimes for its application to environmentally-friendly approaches such as biogas combustion and exhaust-gas recirculation technology. Two main diluting species, N2 and CO2, are tested at various dilution rates. The results obtained by means of optical diagnostics show that five main flame regimes can be observed for N2-diluted flames by changing excess air and dilution rate. CO2-diluted flames follow the same pattern evolution except that all the domains are shifted to lower excess air. Both N2 and CO2 dilution affect the lean blow-out (LBO) limits negatively. This behavior can be counter-balanced by reactant preheating which is able to broaden the flammability domain of the diluted flames. Flame reactivity is degraded by increasing dilution rate. Meanwhile, flames are thickened in the presence of both diluting species. NOx emissions are significantly reduced with dilution and proved to be relevant to flame stability diagrams: slight augmentation in NOx emission profiles is related to transitional flame states where instability occurs. Although dilution results in increase in CO emissions at certain levels, optimal dilution rates can still be proposed to achieve an ideal compromise.
Keywords:  dilution effect      premixed combustion      swirl flow      optical diagnostics  
Received:  21 October 2013      Revised:  26 December 2013      Accepted manuscript online: 
PACS:  47.70.Pq (Flames; combustion)  
  47.70.Fw (Chemically reactive flows)  
  47.50.Ef (Measurements)  
  47.27.ep (Large-eddy simulations)  
Fund: Project supported by the China Scholarship Council.
Corresponding Authors:  Han Yue     E-mail:  hanyue@sa.buaa.edu.cn

Cite this article: 

Han Yue (韩乐), Cai Guo-Biao (蔡国飙), Wang Hai-Xing (王海兴), Renou Bruno, Boukhalfa Abdelkrim Flow characterization and dilution effects of N2 and CO2 on premixed CH4/air flames in a swirl-stabilized combustor 2014 Chin. Phys. B 23 034704

[1] Maruta K, Abe K, Hasegawa S, Maruyama S and Sato J 2007 Proc. Combust. Inst. 31 1223
[2] Maruta K, Muso K, Takeda K and Niioka T 2000 Proc. Combust. Inst. 28 2117
[3] Ishiguro T, Tsuge S, Furuhata T, Kitigawa K, Aral N, Hasegawa T, Tanaka R and Gupta A K 1998 Proc. Combust. Inst. 27 3205
[4] Gupta A K, Bolz S and Hasegawa T 1999 J. Energy Resour. Technol. 121 209
[5] Lille S, Dobski T and Blasiak W 2000 J. Propul. Power 16 595
[6] Yuan J and Naruse I 1999 Energy Fuels 13 99
[7] RØrtveit G J, Hustad J E, Li S C and Williams A 2002 Combust. Flame 130 48
[8] Flamme M 2004 Appl. Therm. Eng. 24 1551
[9] Galmiche B, Halter F, Foucher F and Dagaut P 2011 Energy Fuels 25 948
[10] Chigier N A and Beér J M 1964 J. Basic Eng. 86 788
[11] Davies T W and Beér J M 1971 Proc. Combust. Inst. 13 631
[12] Beér J M and Chigier N A 1972 Combustion Aerodynamics (London: Elsevier) p. 138
[13] Syred N and Beér J M 1974 Combust. Flame 23 143
[14] Gupta A K, Beér J M and Swithenbank J 1977 Combust. Sci. Tech. 17 119
[15] Erlebacher G, Hussaini M Y, Speziale C G and Zang T A 1992 J. Fluid Mech. 238 155
[16] Moin P and Kim J 1982 J. Fluid Mech. 118 341
[17] Wang X W, Cai G B and Jin P 2010 Chin. Phys. B 19 19401
[18] Dixon-Lewis G 1968 Proc. Roy. Soc. A 307 111
[19] Smith G P, Golden D M, Frenklach M, Moriarty N W, Eiteneer B, Goldenberg M, Bowman C T, Hanson R K, Song S, Gardiner W C, Lissianski V V and Qin Z 1999 GRI Mech 3.0
[20] Broda J C, Seo S, Santoro R J, Shirattikar G and Yang V 1998 Proc. Combust. Inst. 27 1849
[21] Gupta A K, Lilley D G and Syred N 1993 Swirl Flows (Cambridge: Abacus Press) p. 253
[22] Vanoverberghe K, van Den Bulck E and Tummers M 2004 Flow Turbul. Combust. 73 25
[23] Schefer R W, Wicksall D M and Agrawal A K 2002 Proc. Combust. Inst. 29 1131
[24] DeGoey L P H, Plessing T, Hermanns R T E and Peters N 2005 Proc. Combust. Inst. 30 859
[25] Taupin B 2003 Etude De La Combustion Turbulente A Faible Richesse Haute Temperature Et Haute Pression (PhD thesis) (Rouen: INSA de Rouen) (in French)
[26] Aldredge R C 1997 Int. Commun. Heat Mass Transfer 24 565
[27] Han Y, Yu N J, Dai J and Cai G B 2013 Proceedings of the 3rd IEEE International Conference on Computer Science and Automation Engineering, November 1–3, 2013, Guangzhou, China
[28] Savitzky A and Golay M J E 1964 Anal. Chem. 36 1627
[29] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in Fortran 77: The art of Scientific Computing (2nd edn.) (Cambridge: Cambridge University Press) p. 496
[30] Mokhtarian F and Mackworth A 1986 IEEE Trans. Pattern Anal. Mach. Intell. 8 34
[31] Kostiuk L W, Shepherd I G and Bray K N C 1999 Combust. Flame 118 129
[32] Ayoola B O, Balachandran R, Frank J H, Mastorakos E and Kaminski C F 2006 Combust. Flame 144 1
[33] Haq M Z, Sheppard C G W, Woolley R, Greenhalgh D A and Lockett R D 2002 Combust. Flame 131 1
[34] Bonaldo A and Kelman J B 2009 Combust. Flame 156 750
[35] Tanahashi M, Murakami S, Choi G M, Fukuchi Y and Miyauchi T 2005 Proc. Combust. Inst. 30 1665
[36] Lee T W, North G L and Santavicca A D 1993 Combust. Flame 93 445
[37] Weigand P, Meier W, Duan X R and Aigner M 2006 J. Eng. Gas Turbines Power 129 664
[1] Studies on aluminum powder combustion in detonation environment
Jian-Xin Nie(聂建新), Run-Zhe Kan(阚润哲), Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Xue-Yong Guo(郭学永), and Shi Yan(闫石). Chin. Phys. B, 2022, 31(4): 044703.
[2] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[3] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[4] Quantitative temperature imaging at elevated pressures and in a confined space with CH4/air laminar flames by filtered Rayleigh scattering
Bo Yan(闫博), Li Chen(陈力), Meng Li(李猛), Shuang Chen(陈爽), Cheng Gong(龚诚), Fu-Rong Yang(杨富荣), Yun-Gang Wu(吴运刚), Jiang-Ning Zhou(周江宁), Jin-He Mu(母金河). Chin. Phys. B, 2020, 29(2): 024701.
[5] Structural response of aluminum core-shell particles in detonation environment
Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Jian-Xin Nie(聂建新), Hong-Bo Pei(裴红波). Chin. Phys. B, 2019, 28(8): 088201.
[6] Effects of heat loss and viscosity friction at walls on flame acceleration and deflagration to detonation transition
Jin Huang(黄金), Wenhu Han(韩文虎), Xiangyu Gao(高向宇), Cheng Wang(王成). Chin. Phys. B, 2019, 28(7): 074704.
[7] Theoretical analysis on deflagration-to-detonation transition
Yun-Feng Liu(刘云峰), Huan Shen(沈欢), De-Liang Zhang(张德良), Zong-Lin Jiang(姜宗林). Chin. Phys. B, 2018, 27(8): 084703.
[8] Combustion of a single magnesium particle in water vapor
Huang Li-Ya (黄利亚), Xia Zhi-Xun (夏智勋), Zhang Wei-Hua (张为华), Huang Xu (黄序), Hu Jian-Xin (胡建新). Chin. Phys. B, 2015, 24(9): 094702.
[9] Numerical and experimental study on shear coaxial injectors with hot hydrogen-rich gas/oxygen-rich gas and GH2/GO2
Jin Ping (金平), Li Mao (李茂), Cai Guo-Biao (蔡国飙). Chin. Phys. B, 2013, 22(4): 044701.
[10] Statistical model for combustion of high-metal magnesium-based hydro-reactive fuel
Hu Jian-Xin (胡建新), Han Chao (韩超), Xia Zhi-Xun (夏智勋), Huang Li-Ya (黄利亚), Huang Xu (黄序). Chin. Phys. B, 2012, 21(12): 124501.
[11] Scaling of the flowfield in a combustion chamber with a gas--gas injector
Wang Xiao-Wei(汪小卫), Cai Guo-Biao(蔡国飙), and Jin Ping(金平). Chin. Phys. B, 2010, 19(1): 019401.
No Suggested Reading articles found!