Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 034209    DOI: 10.1088/1674-1056/23/3/034209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Intensity and composition-dependent sign reversal of non-linearity in TiO2/CeO2 nanocomposites

S. Divya, V. P. N. Nampoori, P. Radhakrishnan, A. Mujeeb
International School of Photonics, Cochin University of Science and Technology, Cochin, Kerala 682022, India
Abstract  CeO2/TiO2 composite nanoparticles with different Ce/Ti molar ratios have been successfully synthesized via sol–gel method. It was found that the band gap of the nanocomposite is tunable by varying Ce/Ti content. The nonlinear response of the sample was studied by using the nanosecond laser pulses from a Q switched Nd:Yag laser employing the Z-scan method. Open aperture Z-scan experiment revealed that with the increase in the CeO2 amount in the nanocomposite, the non-linearity of the composite increases, and it was assumed that this could be due to the modification of TiO2 dipole symmetry by the addition of CeO2. Closed aperture Z-scan experiment showed that when the CeO2 amount increases, positive nonlinear refraction decreases, and this could be attributed to the increase in the two photon absorption which subsequently suppresses the nonlinear refraction.
Keywords:  sol–gel method      non-linearity      Z-scan experiment      reversesaturation absorption curve  
Received:  19 June 2013      Revised:  25 July 2013      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Fund: Project supported by the Department of Science and Technology (DST), Govt. of India.
Corresponding Authors:  S. Divya     E-mail:  divyasasi7@gmail.com

Cite this article: 

S. Divya, V. P. N. Nampoori, P. Radhakrishnan, A. Mujeeb Intensity and composition-dependent sign reversal of non-linearity in TiO2/CeO2 nanocomposites 2014 Chin. Phys. B 23 034209

[1] Sanchez C, Lebeau B, Chaput F and Boilot J P 2003 Adv. Mater. 15 1969
[2] Sanchez C, Soler-Illia G D A, Ribot F, Lalot T, Mayer C R and Cabuil V 2001 Chem. Mater. 13 3061
[3] Novak B M 1993 Adv. Mater. 5 422
[4] Wang Y, Zhang S and Wu X 2004 Nanotechnology 15 1162
[5] Klosek S and Raftery D 2002 J. Phys. Chem. B 105 2815
[6] Yamaki T, Sumita T and Yamamoto S 2002 J. Mater. Sci. Lett. 21 33
[7] Sathish M, Viswanathan B and Viswanath R P 2007 Appl. Catal. B 74 307
[8] Yuan Q, Duan H H, Li L L, Sun L D, Zhang Y W and Yan C H 2009 J. Colloid Interface Sci. 151 335
[9] Orera V M, Merino R I and Pena F 1994 Solid State Ionics 72 224
[10] Choudhury B, Bikash B and Amarjyoti C 2012 Photochem. Photobiol. A 31 1
[11] Long H, Chen A, Yang G, Li Y and Lu P 2009 Thin Solid Films 517 5601
[12] Divya S, Nampoori V P N, Radhakrishnan P and Mujeeb A 2013 Appl. Phys. A
[13] Wang X H, Shi J, Dai S and Yang Y 2003 Thin Solid Films 429 102
[14] Yang P, Song C F, Lü M K, Yin X, Zhou G J, Xu D and Yuan D R 2001 Chem. Phys. Lett. 345 429
[15] Li F B, Li X Z, Hou M F, Cheah K W and Choy W C H 2005 Appl. Catal, A 285 181
[16] Xie J, Jiang D, Chen M, Li D, Zhu J, Lu X and Yan C 2010 Colloids Surf. A 372 107
[17] Blasse G, Schipper W and Hamelink J J 1991 Inorganica Chimica Acta 189 77
[18] Fu C, Li T, Qi J, Pan J, Chen S and Cheng C 2010 Chem. Phys. Lett. 494 117
[19] Chen S W, Lee J M, Lu K T, Pao C W, Lee J F, Chan T S and Chen J M 2010 Appl. Phys. Lett. 97 012104
[20] Sheik-Bahae M, Said A A, Wei T H, Hagan D J and van Stryland E W 1990 IEEE J. Quantum Electron. 26 760
[21] Torres-Torres D, Trejo-Valdez M, Castañeda L, Torres-Torres C, Tamayo-Rivera L, Fernández-Hernández R C, Reyes-Esqueda J A, Muñoz-Saldaña J, Rangel-Rojo R and Oliver A 2010 Opt. Express 18 16406
[22] Wang S X, Zhang L D, Su H, Zhang Z P, Li G H, Meng G W, Zhang J, Wang Y W, Fan J C and Gao T 2001 Phys. Lett. A 281 59
[23] Liu T X, Li X Z and Li F B 2010 Chem. Eng. J. 157 475
[24] Sheik-Bahae M, Said A A and van Stryland E W 1989 Opt. Lett. 14 955
[25] Sheik-Bahae M, Hagan D J and van Stryland E W 1990 Phys. Rev. Lett. 65 96
[26] Wang K, Long H, Fu M, Yang G and Lu P X 2010 Opt. Lett. 35 1560
[27] Draine B T and Flatau P J 1994 J. Opt. Soc. Am. A 11 1491
[1] Giant saturation absorption of tungsten trioxide film prepared based on the seedless layer hydrothermal method
Xiaoguang Ma(马晓光), Fangzhen Hu(胡芳珍), Xi Chen(陈希), Yimeng Wang(王艺盟), Xiaojian Hao(郝晓剑), Min Gu(顾敏), and Qiming Zhang(张启明). Chin. Phys. B, 2023, 32(3): 034212.
[2] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[3] Watt-level, green-pumped optical parametric oscillator based on periodically poled potassium titanyl phosphate with high extraction efficiency
Hang-Hang Yu(俞航航), Zhi-Tao Zhang(张志韬), and Hong-Wen Xuan(玄洪文). Chin. Phys. B, 2022, 31(12): 124203.
[4] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[5] Phase-matched second-harmonic generation in hybrid polymer-LN waveguides
Zijie Wang(王梓杰), Bodong Liu(刘伯东), Chunhua Wang(王春华), and Huakang Yu(虞华康). Chin. Phys. B, 2022, 31(10): 104208.
[6] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[7] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[8] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[9] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[10] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[11] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[12] A 45-μJ, 10-kHz, burst-mode picosecond optical parametric oscillator synchronously pumped at a second harmonic cavity
Chao Ma(马超), Ke Liu(刘可), Yong Bo(薄勇), Zhi-Min Wang(王志敏), Da-Fu Cui(崔大复), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084206.
[13] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[14] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[15] Tunable enhanced spatial shifts of reflective beam on the surface of a twisted bilayer of hBN
Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Yu-Qi Zhang(张玉琦), Xiang-Guang Wang(王相光),Shu-Fang Fu(付淑芳), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2022, 31(6): 064207.
No Suggested Reading articles found!