Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 034202    DOI: 10.1088/1674-1056/23/3/034202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Transmission through array of subwavelength metallic slits curved with a single step or multi-step

Wang Ying-Qi (王瑛琪)a b, Wang Yan-Hua (王艳花)c, Zheng Xian-Hua (郑显华)b, Ye Jia-Sheng (叶佳声)b, Zhang Yan (张岩)a b, Liu Shu-Tian (刘树田)a
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
b Department of Physics, Capital Normal University, Beijing 100048, China;
c Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
Abstract  The transmission of normally incident plane wave through an array of subwavelength metallic slits curved with a single step or mutli-step has been explored theoretically. The transmission spectrum is simulated by using the finite-difference time-domain method. The influences of surface plasmon polaritons make the end of finite long sub-wavelength metallic slit behaves as magnetic-reflecting barrier. The electromagnetic fields in the subwavelength metallic slits are the superposition of standing wave and traveling wave. The standing electromagnetic oscillation behaves like LC oscillating circuit to decide the resonance wavelength. Therefore, the parameters of adding step may change the LC circuit and influence the transmission wavelength. A new explanation model is proposed in which the resonant wavelength is decided by four factors: the changed length for electric field, the changed length for magnetic field, the effective coefficient of capacitance, and the effective coefficient of inductance. The effect of adding step is presented to analyze the interaction of two steps in slit with mutli-step. This explanation model has been proved by the transmission through arrayed subwavelength metallic slits curved with two steps and fractal steps. All calculated results are well explained by our proposed model.
Keywords:  surface plasmon polaritons      metal optics  
Received:  17 April 2013      Revised:  01 August 2013      Accepted manuscript online: 
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB301801), the National Natural Science Foundation of China (Grant Nos. 10904099, 11174211, 11204188, and 61205097), and the Natural Science Foundation of Beijing, China (Grant No. KZ201110028035).
Corresponding Authors:  Wang Ying-Qi, Zhang Yan     E-mail:  wangyingqi.hit@gmail.com;yzhang@mail.cnu.edu.cn

Cite this article: 

Wang Ying-Qi (王瑛琪), Wang Yan-Hua (王艳花), Zheng Xian-Hua (郑显华), Ye Jia-Sheng (叶佳声), Zhang Yan (张岩), Liu Shu-Tian (刘树田) Transmission through array of subwavelength metallic slits curved with a single step or multi-step 2014 Chin. Phys. B 23 034202

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Lezec H J, Degiron A, Devaux E, Linke R A, Martin-Moreno L, Garcia-Vidal F J and Ebbesen T W 2002 Science 297 820
[3] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[4] Matsui T, Agrawal A, Nahata A and Vardeny Z V 2007 Nature 446 517
[5] Genet C and Ebbesen T W 2007 Nature 445 39
[6] Dintinger J, Klein S, Bustos F, Barnes W L and Ebbesen T W 2005 Phys. Rev. B 71 035424
[7] Barnes W L, Murray W A, Dintinger J, Devaux E and Ebbesen T W 2004 Phys. Rev. Lett. 92 107401
[8] Miyamaru F and Hangyo M 2005 Phys. Rev. B 71 165408
[9] Qu D X and Grischkowsky D 2004 Phys. Rev. Lett. 93 196804
[10] Rivas J G, Schotsch C, Bolivar P H and Kurz H 2003 Phys. Rev. B 68 201306
[11] Astilean S, Lalanne P and Palamaru M 2000 Opt. Commun. 175 265
[12] Takakura Y 2001 Phys. Rev. Lett. 86 5601
[13] Cao Q and Lalanne P 2002 Phys. Rev. Lett. 88 057403
[14] Lalanne P, Sauvan C, Hugonin J P, Rodier J C and Chavel P 2003 Phys. Rev. B 68 125404
[15] Lee K G and Park Q H 2005 Phys. Rev. Lett. 95 103902
[16] Tsai M W, Chuang T H, Meng C Y, Chang Y T and Lee S C 2006 Appl. Phys. Lett. 88 071114
[17] Suckling J R, Hibbins A P, Lockyear M J, Preist T W and Sambles J R 2004 Phys. Rev. Lett. 92 147401
[18] Xie Y, Zakharian A, Moloney J and Mansuripur M 2005 Opt. Express 13 4485
[19] Cheng C, Chen J, Wu Q Y, Ren F F, Xu J, Fan Y X and Wang H T 2007 Appl. Phys. Lett. 91 111111
[20] Ginzburg P and Orenstein M 2007 Opt. Express 15 6762
[21] Shi H F, Wang C T, Du C L, Luo X G, Dong X C and Gao H T 2005 Opt. Express 13 6815
[22] Shao D B and Chen S C 2005 Appl. Phys. Lett. 86 253107
[23] Sun Z and Kim H K 2004 Appl. Phys. Lett. 85 642
[24] Lockyear M J, Hibbins A P and Sambles J R 2007 Appl. Phys. Lett. 91 251106
[25] Wang Y H, Wang Y Q, Zhang Y and Liu S T 2009 Opt. Express 17 5014
[26] Wang Y Q, Wang Y H, Ye J S, Zhang Y and Liu S T 2011 Opt. Commun. 284 877
[27] Ge D B and Yan Y B 2003 Electromagnetic Algorithm: The Finite-Difference Time-Domain method (Beijing: Electronic Science and Technology University Press)
[28] Taflove A and Hagness S C 2005 Computational Electrodynamics: The Finite-Difference Time-Domain Method (3rd edn.) (Boston: Artech House)
[29] Baida F I and Labeke D V 2003 Phys. Rev. B 67 155314
[30] Gray S K and Kupka T 2003 Phys. Rev. B 68 045415
[31] Shao D B and Chen S C 2005 Opt. Express 13 6964
[32] Hibbins A P, Lockyear M J and Sambles J R 2006 J. Appl. Phys. 99 124903
[33] Liu H T and Lalanne P 2008 Nature 452 728
[1] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[2] Improvement of femtosecond SPPs imaging by two-color laser photoemission electron microscopy
Chun-Lai Fu(付春来), Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Xiao-Wei Song(宋晓伟), Peng Lang(郎鹏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107103.
[3] Two-color laser PEEM imaging of horizontal and vertical components of femtosecond surface plasmon polaritons
Zhen-Long Zhao(赵振龙), Bo-Yu Ji(季博宇), Lun Wang(王伦), Peng Lang(郎鹏), Xiao-Wei Song(宋晓伟), and Jing-Quan Lin(林景全). Chin. Phys. B, 2022, 31(10): 107104.
[4] Mode splitting and multiple-wavelength managements of surface plasmon polaritons in coupled cavities
Ping-Bo Fu(符平波) and Yue-Gang Chen(陈跃刚). Chin. Phys. B, 2022, 31(1): 014216.
[5] High-confinement ultra-wideband bandpass filter using compact folded slotline spoof surface plasmon polaritons
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Ling-Ling Wang(王玲玲), Qi-Ming Yu (余奇明), Jian-Lou(娄健), and Shi-Ning Sun(孙世宁). Chin. Phys. B, 2022, 31(1): 014102.
[6] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[7] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[8] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[9] Design and verification of a broadband highly-efficient plasmonic circulator
Jianfei Han(韩建飞), Shu Zhen(甄姝), Weihua Wang(王伟华), Kui Han(韩奎), Haipeng Li(李海鹏), Lei Zhao(赵雷), and Xiaopeng Shen(沈晓鹏). Chin. Phys. B, 2021, 30(3): 034102.
[10] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[11] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[12] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[13] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[14] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[15] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
No Suggested Reading articles found!