|
|
Experimental identification of a comb-shaped chaotic region in multiple parameter spaces simulated by the Hindmarsh–Rose neuron model |
Jia Bing (贾冰) |
Center for Computational System Biology, School of Mathematical Science, Fudan University, Shanghai 200433, China |
|
|
Abstract A comb-shaped chaotic region has been simulated in multiple two-dimensional parameter spaces using the Hindmarsh–Rose (HR) neuron model in many recent studies, which can interpret almost all of the previously simulated bifurcation processes with chaos in neural firing patterns. In the present paper, a comb-shaped chaotic region in a two-dimensional parameter space was reproduced, which presented different processes of period-adding bifurcations with chaos with changing one parameter and fixed the other parameter at different levels. In the biological experiments, different period-adding bifurcation scenarios with chaos by decreasing the extra-cellular calcium concentration were observed from some neural pacemakers at different levels of extra-cellular 4-aminopyridine concentration and from other pacemakers at different levels of extra-cellular caesium concentration. By using the nonlinear time series analysis method, the deterministic dynamics of the experimental chaotic firings were investigated. The period-adding bifurcations with chaos observed in the experiments resembled those simulated in the comb-shaped chaotic region using the HR model. The experimental results show that period-adding bifurcations with chaos are preserved in different two-dimensional parameter spaces, which provides evidence of the existence of the comb-shaped chaotic region and a demonstration of the simulation results in different two-dimensional parameter spaces in the HR neuron model. The results also present relationships between different firing patterns in two-dimensional parameter spaces.
|
Received: 22 June 2013
Revised: 30 August 2013
Accepted manuscript online:
|
PACS:
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
87.19.L-
|
(Neuroscience)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11072135). |
Corresponding Authors:
Jia Bing
E-mail: jiabing427@163.com;jiabing427@gmail.com
|
Cite this article:
Jia Bing (贾冰) Experimental identification of a comb-shaped chaotic region in multiple parameter spaces simulated by the Hindmarsh–Rose neuron model 2014 Chin. Phys. B 23 030505
|
[1] |
Hindmarsh J L and Rose R M 1984 Proc. R Soc. London Ser. B 219 87
|
[2] |
Holden A V and Fan Y S 1992 Chaos Soliton. Fract. 2 221
|
[3] |
Fan Y S and Holden A V 1992 Chaos Soliton. Fract. 2 349
|
[4] |
Fan Y S and Holden A V 1993 Chaos Soliton. Fract. 3 439
|
[5] |
Wang X J 1993 Physica D 62 263
|
[6] |
González-Miranda J M 2005 Phys. Rev. E 72 051922
|
[7] |
González-Miranda J M 2003 Chaos 13 845
|
[8] |
Innocenti G and Genesio R 2009 Chaos 19 023124
|
[9] |
Braun H A, Wissing H and Schäfer K 1994 Nature 367 270
|
[10] |
Sejnowski T J 1995 Nature 376 21
|
[11] |
Yang M H, An S C, Gu H G, Liu Z Q and Ren W 2006 Neuro Report 17 995
|
[12] |
Varela F, Lachaux J P, Rodriguez E and Martinerie J 2001 Nature Rev. Neurosci. 2 229
|
[13] |
Dhamala M, Jirsa V K and Ding M 2004 Phys. Rev. Lett. 92 028101
|
[14] |
Hansel D and Sompolinsky H 1992 Phys. Rev. Lett. 68 718
|
[15] |
Dhamala M, Jirsa V K and Ding M 2004 Phys. Rev. Lett. 92 074104
|
[16] |
Rosenblum M G and Pikovsky A S 2004 Phys. Rev. Lett. 92 114102
|
[17] |
Jiang Y 2004 Phys. Rev. Lett. 93 229801
|
[18] |
González-Miranda J M 2007 Int. J. Bifurc. Chaos Appl. Sci. Eng. 17 3071
|
[19] |
Zhang N, Zhang H M, Liu Z Q, Ding X L, Yang M H, Gu H G and Ren W 2009 Chin. Phys. Lett. 26 110501
|
[20] |
Liu Z Q, Zhang H M, Li Y Y, Hua C C, Gu H G and Ren W 2010 Physica A 389 2642
|
[21] |
Li Y Y, Zhang H M, Wei C L, Yang M H, Gu H G and Ren W 2009 Chin. Phys. Lett. 26 030504
|
[22] |
Yuan L, Liu Z Q, Zhang H M, Yang M H, Wei C L, Ding X L, Gu H G and Ren W 2011 Chin. Phys. B 20 020508
|
[23] |
Rech P C 2011 Phys. Lett. A 375 1461
|
[24] |
Innocenti G, Morelli A, Genesio R and Torcini A 2007 Chaos 17 043128
|
[25] |
Rech P C 2012 Chin. Phys. Lett. 29 060506
|
[26] |
Linaro D, Poggi T and Storace M 2010 Phys. Lett. A 374 4589
|
[27] |
Barrio R and Shilnikov A 2011 J. Math. Neurosci. 1 6
|
[28] |
Shilnikov A L and Kolomiets M L 2008 Int. J. Bifurc. Chaos Appl. Sci. Eng. 18 2141
|
[29] |
Linaro D, Champneys A, Desroches M and Storace M 2012 SIAM J. Appl. Dyn. Syst. 11 939
|
[30] |
González-Miranda J M 2012 Chaos 22 013123
|
[31] |
Gu H G, Jia B and Chen G R 2013 Phys. Lett. A 377 718
|
[32] |
Wu X B, Mo J, Yang M H, Zheng Q H, Gu H G and Ren W 2008 Chin. Phys. Lett. 25 2799
|
[33] |
Gu H G, Yang M H, Li L, Liu Z Q and Ren W 2003 Phys. Lett. A 319 89
|
[34] |
Yang M H, Liu Z Q, Li L, Xu Y L, Liu H J, Gu H G and Ren W 2009 Int. J. Bifurc. Chaos Appl. Sci. Eng. 19 453
|
[35] |
Gu H G, Yang M H, Li L, Liu Z Q and Ren W 2004 Dyn. Contin. Discr. Impul. Syst. Ser. B 11a 19
|
[36] |
Gu H G, Yang M H, Li L, Liu Z Q and Ren W 2003 Int. J. Mod. Phys. B 17 4195
|
[37] |
Gu H G, Yang M H, Li L, Liu Z Q and Ren W 2002 Neuro Report 13 1657
|
[38] |
Mo J, Li Y Y, Wei C L, Yang M H, Liu Z Q, Gu H G, Qu S X and Ren W 2010 Chin. Phys. B 19 080513
|
[39] |
Gu H G, Ren W, Lu Q S, Wu S G and Chen W J 2001 Phys. Lett. A 285 63
|
[40] |
Wang D, Mo J, Zhao X Y, Gu H G, Qu S X and Ren W 2010 Chin. Phys. Lett. 27 070503
|
[41] |
Gu H G, Zhang H M, Wei C L, Yang M H, Liu Z Q and Ren W 2011 Int. J. Mod. Phys. B 25 3977
|
[42] |
Gu H G 2013 Chaos 23 023126
|
[43] |
Jia B, Gu H G, Li L and Zhao X Y 2012 Cogn. Neurodyn. 6 89
|
[44] |
Bennett G J and Xie Y K 1988 Pain 33 87
|
[45] |
Tal M and Eliav E 1996 Pain 64 511
|
[46] |
Feudel U, Neiman A, Pei X, Wojtennek W, Braun H, Huber M and Moss F 2000 Chaos 10 231
|
[47] |
Braun H A, Schäfer K, Voigt K, Peters R, Bretschneider F, Pei X, Wilkens L and Moss F 1997 J. Comput. Neurosci. 4 335
|
[48] |
Braun H A, Schwabedal J, Dewald M, Finke C and Postnova S 2011 Chaos 21 047509
|
[49] |
Kim M Y, Aguilar M, Hodge A, Vigmond E, Shrier A and Glass L 2009 Phys. Rev. Lett. 103 058101
|
[50] |
Quail T, McVicar N, Aguilar M, Kim M Y, Hodge A, Glass L and Shrier A 2012 Chaos 22 033140
|
[51] |
Farmer J D and Sidorowich J J 1987 Phys. Rev. Lett. 59 845
|
[52] |
Theiler J, Eubank S, Longtin A, Galdrikian B and Farmer J D 1992 Physica D 58 77
|
[53] |
Zheng Q H, Liu Z Q, Yang M H, Wu X B, Gu H G and Ren W 2009 Phys. Lett. A 373 540
|
[54] |
Ma J, Ying H P, Liu Y and Li S R 2009 Chin. Phys. B 18 98
|
[55] |
Wang C N, Ma J, Tang J and Li Y L 2010 Commun. Theor. Phys. 53 382
|
[56] |
Schiff S J, Huang X and Wu J Y 2007 Phys. Rev. Lett. 98 178102
|
[57] |
Huang X, Xu W, Liang J, Takagaki K, Gao X and Wu J Y 2010 Neuron 68 978
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|