Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 100503    DOI: 10.1088/1674-1056/ac7294
GENERAL Prev   Next  

Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor

Li-Ping Zhang(张丽萍)1,2, Yang Liu(刘洋)3, Zhou-Chao Wei(魏周超)4, Hai-Bo Jiang(姜海波)2,†, Wei-Peng Lyu(吕伟鹏)1,2, and Qin-Sheng Bi(毕勤胜)1
1. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China;
2. School of Mathematics and Statistics, Yancheng Teachers University, Yancheng 224002, China;
3. Engineering Department, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UK;
4. School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
Abstract  We present a class of two-dimensional memristive maps with a cosine memristor. The memristive maps do not have any fixed points, so they belong to the category of nonlinear maps with hidden attractors. The rich dynamical behaviors of these maps are studied and investigated using different numerical tools, including phase portrait, basins of attraction, bifurcation diagram, and Lyapunov exponents. The two-parameter bifurcation analysis of the memristive map is carried out to reveal the bifurcation mechanism of its dynamical behaviors. Based on our extensive simulation studies, the proposed memristive maps can produce hidden periodic, chaotic, and hyper-chaotic attractors, exhibiting extremely hidden multi-stability, namely the coexistence of infinite hidden attractors, which was rarely observed in memristive maps. Potentially, this work can be used for some real applications in secure communication, such as data and image encryptions.
Keywords:  two-dimensional maps      memristive maps      hidden attractors      bifurcation analysis      extremely hidden multi-stability  
Received:  13 March 2022      Revised:  10 May 2022      Accepted manuscript online: 
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11972173 and 12172340).
Corresponding Authors:  Hai-Bo Jiang     E-mail:  yctcjhb@126.com

Cite this article: 

Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜) Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor 2022 Chin. Phys. B 31 100503

[1] Chua L O 1971 IEEE Trans. Circuit Th. 18 507
[2] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[3] Corinto F, Forti M and Chua L O 2021 Nonlinear Circuits and Systems with Memristors (Switzerland: Springer)
[4] Peng Y, Sun K and He S 2020 Chaos, Solitons and Fractals 137 109873
[5] Peng Y, He S and Sun K 2021 AEU–Int. J. Electron. Commun. 129 153539
[6] Bao B, Li H, Wu H, Zhang X and Chen M 2020 Electron. Lett. 56 769
[7] Li H, Hua Z, Bao H, Zhu L, Chen M and Bao B 2020 IEEE Trans. Ind. Electron. 68 9931
[8] Bao H, Hua Z, Li H, Chen M and Bao B 2021 IEEE Trans. Circuits Syst. I 68 4534
[9] Bao B, Rong K, Li H, Li K, Hua Z and Zhang X 2021 IEEE Trans. Circuits Syst. II 68 2992
[10] Bao H, Hua Z Y, Li H Z, Chen M and Bao B IEEE Trans. Ind. Informat. 18 5297
[11] Li K, Bao H, Li H, Ma J, Hua Z and Bao B 2021 IEEE Trans. Ind. Informat. 18 1726
[12] Deng Y and Li Y 2021 Chaos, Solitons and Fractals 150 111064
[13] Deng Y and Li Y 2021 Nonlinear Dyn. 104 4601
[14] Kong S, Li C, He S, Çiçek S and Lai Q 2021 Chin. Phys. B 30 110502
[15] Liu T, Mou J, Xiong L, Han X, Yan H and Cao Y 2021 Phys. Scr. 96 125242
[16] Li Y, Li C, Zhao Y and Liu S 2022 Chaos 32 021104
[17] Fu L, He S, Wang H and Sun K 2022 Acta Phys. Sin. 71 030501 (in Chinese)
[18] Ma M, Yang Y, Qiu Z, Peng Y, Sun Y, Li Z and Wang M 2022 Nonlinear Dyn. 107 2935
[19] Ramakrishnan B, Mehrabbeik M, Parastesh F, Rajagopal K and Jafari S 2022 Electronics 11 153
[20] Lai Q and Lai C 2022 IEEE Trans. Circuits Syst. II 69 2331
[21] Lai Q, Lai C, Zhang H and Li C 2022 Chaos, Solitons and Fractals 158 112017
[22] Rong K, Bao H, Li H, Hua Z and Bao B 2022 Nonlinear Dyn. 108 4459
[23] Peng Y, Lan Z, Li W, Li Y and Peng J 2022 Eur. Phys. J. Spec. Top.
[24] Bao H, Li H, Hua Z, Xu Q and Bao B IEEE Trans. Ind. Informat.
[25] Leonov G A, Kuznetsov N V and Vagaitsev V I 2011 Phys. Lett. A 375 2230
[26] Leonov G A, Kuznetsov N V and Vagaitsev V I 2012 Physica D 241 1482
[27] Leonov G A and Kuznetsov N V 2013 Int. J. Bifurc. Chaos 23 1330002
[28] Leonov G A, Kuznetsov N V and Mokaev T N 2015 Commun. Nonlinear Sci. Numer. Simul. 28 166
[29] Pham V T, Volos C and Kapitaniak T 2017 Systems with Hidden Attractors (Switzerland: Springer)
[30] Wang X, Kuznetsov N V and Chen G 2021 Chaotic Systems with Multistability and Hidden Attractors (Switzerland: Springer)
[31] Jiang H, Liu Y, Wei Z and Zhang L 2016 Nonlinear Dyn. 85 2719
[32] Jiang H, Liu Y, Wei Z and Zhang L 2016 Int. J. Bifurc. Chaos 26 1650206
[33] Jiang H, Liu Y, Wei Z and Zhang L 2019 Int. J. Bifurc. Chaos 29 1950094
[34] Ramadoss J, Ouannas A, Tamba V K, Grassi G, Momani S and Pham V T 2022 Eur. Phys. J. Plus 137 211
[35] Pisarchik A N and Feudel U 2014 Phys. Rep. 540 167
[36] Zhang L, Jiang H, Liu Y, Wei Z and Bi Q 2021 Int. J. Bifurc. Chaos 31 2150047
[37] Zhang L, Liu Y, Wei Z, Jiang H and Bi Q 2020 Chin. Phys. B 29 060501
[38] Bao B, Li H, Zhu L, Zhang X and Chen M 2020 Chaos 30 033107
[39] Kong S X, Li C B, Jiang H B, Lai Q and Jiang X W 2021 Chaos 31 043121
[40] Li C, Chen Z, Yang X, He S, Yang Y and Du J 2021 Eur. Phys. J. Spec. Top. 230 1959
[41] Zhang L, Liu Y, Wei Z, Jiang H and Bi Q 2022 Chin. Phys. B 31 030503
[42] Zhang L, Liu Y, Wei Z, Jiang H and Bi Q 2022 Eur. Phys. J. Spec. Top. 231 2173
[43] Sprott J C 1993 Strange Attractors: Creating Patterns in Chaos (New York: M&T books)
[44] Sprott J C 2010 Elegant Chaos: Algebraically Simple Chaotic Flows (Singapore: World Scientific) pp. 24–30
[45] Wolf A, Swift J B, Swinney H L and Vastano J A 1985 Physica D 16 285
[46] Sprott J C and Chlouverakis K E 2005 Physica D 200 156
[1] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[2] A class of two-dimensional rational maps with self-excited and hidden attractors
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超),Hai-Bo Jiang(姜海波), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(3): 030503.
[3] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[4] Dual mechanisms of Bcl-2 regulation in IP3-receptor-mediated Ca2+ release: A computational study
Hong Qi(祁宏), Zhi-Qiang Shi(史志强), Zhi-Chao Li(李智超), Chang-Jun Sun(孙长君), Shi-Miao Wang(王世苗), Xiang Li(李翔), and Jian-Wei Shuai(帅建伟). Chin. Phys. B, 2021, 30(10): 108704.
[5] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[6] A new nonlinear oscillator with infinite number of coexisting hidden and self-excited attractors
Yan-Xia Tang(唐妍霞), Abdul Jalil M Khalaf, Karthikeyan Rajagopal, Viet-Thanh Pham, Sajad Jafari, Ye Tian(田野). Chin. Phys. B, 2018, 27(4): 040502.
[7] A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control
J P Singh, V T Pham, T Hayat, S Jafari, F E Alsaadi, B K Roy. Chin. Phys. B, 2018, 27(10): 100501.
[8] Coexisting hidden attractors in a 4D segmented disc dynamo with one stable equilibrium or a line equilibrium
Jianghong Bao(鲍江宏), Dandan Chen(陈丹丹). Chin. Phys. B, 2017, 26(8): 080201.
[9] Multi-scroll hidden attractors and multi-wing hidden attractors in a 5-dimensional memristive system
Xiaoyu Hu(胡晓宇), Chongxin Liu(刘崇新), Ling Liu(刘凌), Yapeng Yao(姚亚鹏), Guangchao Zheng(郑广超). Chin. Phys. B, 2017, 26(11): 110502.
[10] A novel four-wing chaotic attractor generated from a three-dimensional quadratic autonomous system
Dong En-Zeng(董恩增), Chen Zai-Ping(陈在平), Chen Zeng-Qiang(陈增强), and Yuan Zhu-Zhi(袁著祉). Chin. Phys. B, 2009, 18(7): 2680-2689.
[11] The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system
Wang Jie-Zhi (王杰智), Chen Zeng-Qiang (陈增强), Yuan Zhu-Zhi (袁著祉). Chin. Phys. B, 2006, 15(6): 1216-1225.
No Suggested Reading articles found!