Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 030504    DOI: 10.1088/1674-1056/23/3/030504
GENERAL Prev   Next  

Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength

Chai Yuan (柴元)a, Chen Li-Qun (陈立群)a b c
a Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
b Department of Mechanics, Shanghai University, Shanghai 200444, China;
c Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
Abstract  In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle’s invariance principle, a criterion is established by constructing an effective control identification scheme and adjusting automatically the adaptive coupling strength. The proposed control law is applied to a complex community network which is periodically synchronized with different chaotic states. Numerical simulations are conducted to demonstrate the feasibility of the proposed method.
Keywords:  community networks      periodic synchronization      adaptive coupling strength      uncertain parameters  
Received:  19 May 2013      Revised:  25 July 2013      Accepted manuscript online: 
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the Key Program of the National Natural Science of China (Grant No. 11232009) and the Shanghai Leading Academic Discipline Project, China (Grant No. S30106).
Corresponding Authors:  Chen Li-Qun     E-mail:  lqchen@straff.shu.edu.cn

Cite this article: 

Chai Yuan (柴元), Chen Li-Qun (陈立群) Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength 2014 Chin. Phys. B 23 030504

[1] Erdös P and Rényi A 1960 Publications Mathématiques, Institut de Hungarian Academy of Sciences 5 17
[2] Watts D J and Strogatz S H 1998 Nature 393 440
[3] Newman M E J and Watts D J 1999 Phys. Lett. A 263 341
[4] Barabási A L and Albert R 1999 Science 286 509
[5] Newman M E J 2010 Networks: An Introduction (London: Oxford University Press)
[6] Ahn Y, Bagrow J and Lehmann S 2010 Nature 466 761
[7] Palla G, Derényi I, Farkas I and Vicsek T 2005 Nature 435 814
[8] Gregory S 2012 Physica A 391 2752
[9] Wu J, Wang X and Jiao L 2012 Physica A 391 508
[10] Wu Z and Fu X 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 1628
[11] Zhang Z, Fu Z Q and Yan G 2009 Chin. Phys. B 18 2209
[12] Lü L, Li G, Guo L, Meng L, Zou J R and Yang M 2010 Chin. Phys. B 19 080507
[13] Tang H, Chen L, Lu J and Tse C 2008 Physica A 387 5623
[14] Wang G, Cao J and Lu J 2010 Physica A 389 1480
[15] Wang K, Fu X and Li K 2009 Chaos 19 023106
[16] Lu W, Liu B and Chen T 2010 Chaos 20 013120
[17] Du H 2011 Chaos Soliton. Fract. 44 510
[18] Cai S, He Q, Hao J and Liu Z 2010 Phys. Lett. A 374 2539
[19] Wu X and Lu H 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 3005
[20] Hu C, Yu J, Jiang H and Teng Z 2011 Phys. Lett. A 375 873
[21] Li Y, Liu Z R and Zhang J B 2008 Chin. Phys. Lett. 25 874
[22] Sun F Y 2006 Chin. Phys. Lett. 23 32
[23] Cai N, Jing Y W and Zhang S Y 2009 Acta Phys. Sin. 58 802 (in Chinese)
[24] Song Q, Cao J and Liu F 2010 Phys. Lett. A 374 544
[25] Lü L, Zhang Q L and Guo Z A 2008 Chin. Phys. B 17 498
[26] Sang J Y, Yang J and Yue L J 2011 Chin. Phys. B 20 080507
[27] Li Z and Han C Z 2002 Chin. Phys. 11 9
[28] Liu J, Chen S H and Zhao L M 2002 Chin. Phys. 11 543
[29] Guan X P and Hua C C 2002 Chin. Phys. Lett. 19 1031
[30] Lü L, Guo Z A and Zhang C 2007 Chin. Phys. 16 1603
[31] Zhang X H and Shen K 1999 Chin. Phys. 8 651
[32] Li Z, Liu X, Ren W and Xie L 2012 American Control Conference (ACC) p.1573
[33] Zhao Y, Li Z and Duan Z 2013 Int. J. Control
[34] DeLellis P, DiBernardo M and Garofalo F 2009 Automatica 45 1312
[35] Guo W, Austin F and Chen S 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 1631
[1] Robust output feedback cruise control for high-speed train movement with uncertain parameters
Li Shu-Kai (李树凯), Yang Li-Xing (杨立兴), Li Ke-Ping (李克平). Chin. Phys. B, 2015, 24(1): 010503.
[2] Partial and complete periodic synchronization in coupled discontinuous map lattices
Yang Ke-Li (杨科利), Chen Hui-Yun (陈会云), Du Wei-Wei (杜伟伟), Jin Tao (金涛), Qu Shi-Xian (屈世显). Chin. Phys. B, 2014, 23(7): 070508.
[3] Robust finite-time stabilization of unified chaotic complex systems with certain and uncertain parameters
Liu Ping (刘平). Chin. Phys. B, 2013, 22(7): 070501.
[4] Complete synchronization of double-delayed R?ssler systems with uncertain parameters
Sang Jin-Yu(桑金玉), Yang Ji(杨吉), and Yue Li-Juan(岳立娟) . Chin. Phys. B, 2011, 20(8): 080507.
[5] Generating weighted community networks based on local events
Xu Qi-Xin(徐琪欣) and Xu Xin-Jian(许新建). Chin. Phys. B, 2009, 18(3): 933-938.
[6] Properties of asymmetrically evolved community networks
Cui Di(崔迪), Gao Zi-You(高自友), and Zheng Jian-Feng(郑建风). Chin. Phys. B, 2009, 18(2): 516-521.
[7] Synchronization of coupled logistic maps on random community networks
Feng Cun-Fang(冯存芳), Xu Xin-Jian(许新建), Wu Zhi-Xi(吴枝喜), and Wang Ying-Hai(汪映海). Chin. Phys. B, 2008, 17(6): 1951-1956.
[8] Cascades with coupled map lattices in preferential attachment community networks
Cui Di(崔迪), Gao Zi-You(高自友), and Zhao Xiao-Mei(赵小梅) . Chin. Phys. B, 2008, 17(5): 1703-1708.
[9] Adaptive synchronization of uncertain Liu system via nonlinear input
Hu Jia(胡佳) and Zhang Qun-Jiao(张群娇) . Chin. Phys. B, 2008, 17(2): 503-506.
[10] Adaptive passive equivalence of uncertain Lü system
Qi Dong-Lian(齐冬莲). Chin. Phys. B, 2006, 15(8): 1715-1718.
[11] Global adaptive synchronization of chaotic systems with uncertain parameters
Li Zhi (李智), Han Chong-Zhao (韩崇昭). Chin. Phys. B, 2002, 11(1): 9-11.
[12] ADAPTIVE CONTROL AND IDENTIFICATION OF CHAOTIC SYSTEMS
Li Zhi (李智), Han Chong-zhao (韩崇昭). Chin. Phys. B, 2001, 10(6): 494-496.
No Suggested Reading articles found!