Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 030306    DOI: 10.1088/1674-1056/23/3/030306
GENERAL Prev   Next  

Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction

S. Ortakayaa, H. Hassanabadib, B. H. Yazarloob
a Institute of Natural and Applied Sciences, Erciyes University, 38039 Kayseri, Turkiye;
b Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
Abstract  Approximate analytical solutions of the Dirac equation in the case of pseudospin and spin symmetry limits are investigated under the Deng–Fan potential by applying the asymptotic iteration method for the arbitrary quantum numbers n and κ. Some of the numerical results are also represented in both pseudospin symmetry and spin symmetry limits.
Keywords:  Dirac equation      Deng–Fan potential      pseudospin and spin symmetries      tensor interaction  
Received:  06 August 2013      Revised:  26 August 2013      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
  02.30.Gp (Special functions)  
Corresponding Authors:  S. Ortakaya     E-mail:  sami.ortakaya@yahoo.com

Cite this article: 

S. Ortakaya, H. Hassanabadi, B. H. Yazarloo Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction 2014 Chin. Phys. B 23 030306

[1] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[2] Ginocchio J N and Leviatan A 1998 Phys. Lett. B 245 1
[3] Leviatan A and Ginocchio J N 2001 Phys. Lett. B 518 214
[4] Ginocchio J N 2005 Phys. Rep. 414 165
[5] Meng J, Sugawara-Tanabe K, Yamaji S and Arima A 1999 Phys. Rev. C 59 154
[6] Meng J 2005 Phys. Rev. C 58 R628
[7] Alberto P, Fiolhais M, Malheiro M, Delfino A and Chiapparini M 2002 Phys. Rev. C 65 034307
[8] Qiang W C, Zhou R S and Gao Y 2007 J. Phys. A: Math. Theor. 40 1677
[9] Alhaidari A D, Bahlouli H and Al-Hasan A 2006 Phys. Lett. A 349 87
[10] Guo J Y, Han J C and Wang R D 2006 Phys. Lett. A 353 378
[11] Jia C S, Guo P and Peng X L 2006 J. Phys. A: Math. Gen. 39 7737
[12] Wei G F and Dong S H 2008 Phys. Lett. A 373 49
[13] Aydogdu O and Sever R 2010 Ann. Phys. 325 373
[14] Zarrinkamar S, Rajabi A A and Hassanabadi H 2011 Phys. Scr. 83 015009
[15] Zhou Y and Guo J Y 2008 Chin. Phys. B 17 380
[16] Chen W L and Wei G F 2011 Chin. Phys. B 20 062101
[17] Ikhdair S M 2011 J. Math. Phys. 52 052303
[18] Eshghi M 2013 Can. J. Phys. 91 71
[19] Wei G F, Long C Y and Dong S H 2008 Phys. Lett. A 372 2592
[20] Ikot A N, Maghsoodi E, Zarrinkamar S and Hassanabadi H 2013 Few-Body Syst. 54 2027
[21] Wei G F and Dong S H 2010 Eur. Phys. J. A 43 185
[22] Maghsoodi E, Hassanabadi H and Zarrinkamar S 2012 Few-Body Syst. 53 525
[23] Eshghi M, Hamzavi M and Ikhdair S M 2012 Adv. High En. Phys.
[24] Arda A and Sever R 2012 Mod. Phys. Lett. A 27 12501717
[25] Ortakaya S 2013 Few-Body Syst. 54 2073
[26] Ortakaya S 2013 Ann. Phys. 338 250
[27] Aydogdu O, Maghsoodi E and Hassanabadi H 2013 Chin. Phys. B 22 010302
[28] Deng Z H and Fan Y P 1957 Shandong Univ. J. 7 162
[29] Jia C S, Li Y, Sun Y, Liu J Y and Sun L T 2003 Phys. Lett. A 311 115
[30] Ciftci H, Hall R L and Saad N J 2003 J. Phys. A: Math. Gen. 36 11807
[31] Ciftci H, Hall R L and Saad N J 2005 J. Phys. A: Math. Gen. 38 1147
[32] Ciftci H, Hall R L and Saad N J 2005 Phys. Rev. A 72 022101
[33] Dong S H 2011 Commun. Theor. Phys. 55 969
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[3] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[4] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[5] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[6] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[7] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[8] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[9] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[10] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[11] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[12] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[13] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[14] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
[15] Eigen-spectra in the Dirac-attractive radial problem plus a tensor interaction under pseudospin and spin symmetry with the SUSY approach
S. Arbabi Moghadam, H. Mehraban, M. Eshghi. Chin. Phys. B, 2013, 22(10): 100305.
No Suggested Reading articles found!