Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 100305    DOI: 10.1088/1674-1056/22/10/100305
GENERAL Prev   Next  

Eigen-spectra in the Dirac-attractive radial problem plus a tensor interaction under pseudospin and spin symmetry with the SUSY approach

S. Arbabi Moghadama, H. Mehrabanb, M. Eshghic
a Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran;
b Physics Department, Faculty of Sciences, Semnan University, Semnan, Iran;
c Physics Department, Imam Hossein Comprehensive University, Tehran, Iran
Abstract  We approximately solve the Dirac equation for attractive radial potential including a Coulomb-like tensor interaction under pseudospin and the spin symmetry limit for any arbitrary spin-orbit quantum number, by employing the supersymmetric (SUSY) quantum mechanics and supersymmetric shape invariance technique. We obtain the energy eigenvalue equation under the pseudospin and spin conditions. Some numerical results are compared with those obtained by the Nikiforove-Uvarov (NU) method.
Keywords:  Dirac equation      attractive radial      SUSY      Coulomb-like tensor potential  
Received:  08 February 2013      Revised:  13 April 2013      Accepted manuscript online: 
PACS:  03.65.Pm (Relativistic wave equations)  
  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  
Corresponding Authors:  S. Arbabi Moghadam, H. Mehraban, M. Eshghi     E-mail:  sahararbabi@yahoo.com, sarbabi67@gmail.com;Hmehraban@semnan.ac.ir;eshgi54@gmail.com, kpeshghi@ihu.ac.ir

Cite this article: 

S. Arbabi Moghadam, H. Mehraban, M. Eshghi Eigen-spectra in the Dirac-attractive radial problem plus a tensor interaction under pseudospin and spin symmetry with the SUSY approach 2013 Chin. Phys. B 22 100305

[1] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[2] Page P R, Goldman T and Ginocchio J N 2001 Phys. Rev. Lett. 86 204
[3] Bohr A, Hamamoto I and Mottelson B R 1982 Phys. Scr. 26 267
[4] Dudek J, Nazarewicz W, Szymanski Z and Leander G A 1987 Phys. Rev. Lett. 59 1405
[5] Troltenier D, Bahri C and Draayer G A 1995 Nucl. Phys. A 586 53
[6] Ginocchio J N 2005 Phys. Rep. 414 165
[7] Zarrinkamar S, Rajabi A A and Hassanabadi H 2010 Ann. Phys. 325 2522
[8] Wei G F and Dong S H 2009 Europhys. Lett. 87 40004
[9] Ikhdair S M and Sever R 2010 Appl. Math. Comput. 216 545
[10] Maghsoodi E, Hassanabadi H and Zarrinkamar S 2012 Few-Body Syst. 53 525
[11] Zhang L H, Li X P and Jia C S 2008 Phys. Lett. A 372 2201
[12] Zhang M C, Sun G H and Dong S H 2010 Phys. Lett. A 374 704
[13] Arda A and Sever R 2012 J. Math. Chem. 50 1484
[14] Dong S H 2009 Int. J. Quantum Chem. 109 701
[15] Sun G H and Dong S H 2012 Commun. Theor. Phys. 58 195
[16] Dong S H, Chen C Y and Lozada-Cassou M 2005 Int. J. Quantum Chem. 105 453
[17] Eshghi M 2012 Chin. Phys. Lett. 29 110304
[18] Eshghi M 2013 Canad. J. Phys. 91 71
[19] Eshghi M, Hamzavi M and Ikhdair S M 2012 Adv. High Ener. Phys. 87 3619
[20] Qiang W C, Sun G H and Dong S H 2012 Ann. Phys. (Berlin) 524 360
[21] Jia C S, Chen T and Gui L G 2009 Phys. Lett. A 373 1621
[22] Zhang F, Wang Y and Guo J Y 2009 Commun. Theor. Phys. 52 813
[23] Setare M R and Haidari S 2009 Int. J. Theor. Phys. 48 3249
[24] Guo J Y, Meng J and Xu F X 2003 Chin. Phys. Lett. 20 602
[25] Jia C S, Liu J Y,Wang P Q and Lin X 2009 Int. J. Theor. Phys. 48 2633
[26] Wei G F and Dong S H 2010 Phys. Lett. B 686 288
[27] Guo J Y and Sheng Z Q 2005 Phys. Lett. A 338 90
[28] Samsonov B F and Pecheritsyn A A 2002 Russ. Phys. J. 45 13
[29] Zhang X C, Liu Q W, Jia C S and Wang L Z 2005 Phys. Lett. A 340 59
[30] Alhaidari A D 2001 Phys. Rev. Lett. 87 210405
[31] Gincchio J N and Leviatan A 1998 Phys. Lett. B 425 1
[32] Alberto P, Lisboa R, Malheiro M and de Castro A S 2005 Phys. Rev. C 71 034313
[33] Furnstahl R J, Rusnak J J and Serot B D 1998 Nucl. Phys. A 632 607
[34] MoshinskyMand Szczepaniak A 1989 J. Phys. A: Math. Gen. 22 L817
[35] Mao G 2003 Phys. Rev. C 67 044318
[36] Hamzavi M, EshghiMand Ikhdair SM2012 J. Math. Phys. 53 082101
[37] Eshghi M and Hamzavi M 2012 Commun. Theor. Phys. 57 355
[38] Eshghi M and Mehraban H 2012 Few-Body Syst. 52 41
[39] Akçay H 2009 Phys. Lett. A 373 616
[40] Aydoğdu O and Sever R 2010 Eur. Phys. J. A 43 73
[41] Aydoğdu O and Sever R 2011 Phys. Lett. B 703 379
[42] Williams B W and Poulios D P 1993 Eur. J. Phys. 14 222
[43] Zou X, Yi L Z and Jia C S 2005 Phys. Lett. A 346 54
[44] Hamzavi M, Rajabi A A and Hassanabadi H 2010 Phys. Lett. A 374 4303
[45] Akçay H and Tezcan C 2009 Int. J. Mod. Phys. C 20 931
[46] Ikhdair S M and Sever R 2010 Appl. Math. Comput. 216 911
[47] Greiner W 2000 Relativistic Quantum Mechanics-wave Equation, 3rd edn. (Berlin: Springer-Verlag)
[48] Bjorken J D and Drell S D 1964 Relativistic Quantum Mechanics (New York: McGraw-Hill)
[49] Ginocchio J N 1999 Nucl. Phys. A 654 663
[50] Ginocchio J N 1999 Phys. Rep. 315 231
[51] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[52] Gendenshtein L E 1983 Sov. Phys.: JETP Lett. 38 356
[53] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[54] Jia C S, Zeng X L, Li S C, Sun L T and Yang Q B 2002 Commun. Theor. Phys. 37 523
[55] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser, Verlag)
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[3] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[4] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[5] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[6] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[7] Approximate solutions of Klein—Gordon equation with improved Manning—Rosen potential in D-dimensions using SUSYQM
A. N. Ikot, H. Hassanabadi, H. P. Obong, Y. E. Chad Umoren, C. N. Isonguyo, B. H. Yazarloo. Chin. Phys. B, 2014, 23(12): 120303.
[8] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[9] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[10] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[11] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[12] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[13] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[14] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[15] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
No Suggested Reading articles found!