Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(3): 030302    DOI: 10.1088/1674-1056/24/3/030302
GENERAL Prev   Next  

Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential

Ade Kurniawan, A. Suparmi, C. Cari
Physics Department, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan Surakarta 57126, Indonesia
Abstract  An approximate solution of the Dirac equation for a spin-1/2 particle under the influence of q-deformed hyperbolic Pöschl-Teller potential combined with trigonometric Scarf Ⅱ non-central potential is studied analytically. It is assumed that the scalar potential equals the vector potential in order to obtain analytical solutions. Both radial and angular parts of the Dirac equation are solved using the Nikiforov-Uvarov method. A relativistic energy spectrum and the relation between quantum numbers can be obtained using this method. Several quantum wave functions corresponding to several states are also presented in terms of the Jacobi Polynomials.
Keywords:  Dirac equation      q-deformed hyperbolic function      Pöschl-Teller potential      trigonometric Scarf Ⅱ potential  
Received:  04 August 2014      Revised:  17 October 2014      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
  03.65.Db (Functional analytical methods)  
Corresponding Authors:  Ade Kurniawan     E-mail:  adekoerniawanzz92@gmail.com

Cite this article: 

Ade Kurniawan, A. Suparmi, C. Cari Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential 2015 Chin. Phys. B 24 030302

[1] Greiner W 2000 Relativistic Quantum Mechanics, Wave Equations (3rd Edn.) (Berlin: Springer-Verlag)
[2] Fishbane P M, Gasiorowicz S G, Johannsen D C and Kaus P 1983 Phys. Rev. D 27 2433
[3] Beavis D, Chu S Y, Desai B R and Kaus P 1979 Phys. Rev. D 20 2345
[4] Azizi M, Salehi N and Rajabi A A 2013 ISRN High Energy Physics 310392
[5] Arda A and Sever R 2013 Few-Body Syst. 54 1829
[6] Hamzavi M and Rajabi A A 2013 ISRN High Energy Physics 987632
[7] Guo J Y and Sheng Z Q 2005 Phys. Lett. A 338 90
[8] Ikhdair S M, Falaye B J and Hamzavi M 2013 Chin. Phys. Lett. 30 20305
[9] Chen C Y 2005 Phys. Lett. A 339 283.
[10] Guo J Y, Zhou F, Guo F L and Zhou J H 2007 Mod. Phys. A 22 4825
[11] Agboola D 2012 Few-Body Syst. 52 31
[12] Falaye B J and Oyewumi K J 2011 Afr. Rev. Phys. 6 211
[13] Zhang X C, Liu, Q W, Jia C S and Wang L Z 2005 Phys. Lett. A 340 59
[14] Agboola D 2011 Pramana J. Phys. 76 875
[15] Cheng Y F and Dai T Q 2007 Commun. Theor. Phys. 48 431
[16] Cheng Y F and Dai T Q 2007 Chin. J. Phys. 45 480
[17] Hamzavi M and Rajabi A A 2013 Eur. Phys. J. Plus 128 29
[18] Goudarzi H, Jafari A, Bakkeshizadeh S and Vahidi V 2012 Adv. Studies Theor. Phys. 6 1253
[19] Hu X Q, Luo G, Wu Z M and Niu L B 2010 Commun. Theor. Phys. 53 242
[20] Panahi H and Bakhshi Z 2011 Int. J. Theor. Phys. 50 2811
[21] Haouat S and Chetouani L 2007 Int. J. Theor. Phys. 46 1528
[22] Gaveau B and Schulman L S 2000 Ann. Phys. 284 1
[23] Hassanabadi H, Maghsoodi E, Zarrinkamar S and Rahimov H 2012 Chin. Phys. B 21 120302
[24] Bakkesshizadeh S and Vahidi V 2012 Adv. Studies Theor. Phys. 6 733
[25] Ikhdair S M 2012 ISRN Math. Phys. 201525
[26] Ballesteros A, Civitarese O, Herranz F J and Reboiro M 2002 Phys. Rev. C 66 064317
[27] Ballesteros A, Civitarese O and Reboiro M 2003 Phys. Rev. C 68 44307
[28] Zhang J 2000 Phys. Lett. B 477 361
[29] Algin A, Arik M and Arikan A S 2002 Phys. Rev. E 65 26140
[30] Greene R I and Aldrich C 1976 Phys. Rev. A 14 2363
[31] Nikiforov A F and Uvarov V B 1998 Special Functions of Mathematical Physics (Berlin: Birkhauser Basel)
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[3] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[4] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[5] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[6] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[7] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[8] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[9] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[10] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[11] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[12] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[13] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[14] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
[15] Eigen-spectra in the Dirac-attractive radial problem plus a tensor interaction under pseudospin and spin symmetry with the SUSY approach
S. Arbabi Moghadam, H. Mehraban, M. Eshghi. Chin. Phys. B, 2013, 22(10): 100305.
No Suggested Reading articles found!