Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030303    DOI: 10.1088/1674-1056/22/3/030303
GENERAL Prev   Next  

Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction

M. Eshghia, M. Hamzavib, S. M. Ikhdairc d
a Physics Department, Imam Hossein Comprehensive University, Tehran, Iran;
b Department of Physics, Faculty of Sciences, Shahrood University, Shahrood, Iran;
c Department of Electrical and Electronic Engineering, Near East University, 922022, Nicosia, Northern Cyprus, Turkey;
d Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine
Abstract  The spatially-dependent mass Dirac equation is solved exactly for attractive scalar and repulsive vector Coulomb potentials including a tensor interaction under the spin and pseudospin symmetric limit. Closed forms of the energy eigenvalue equation and wave functions are obtained for arbitrary spin-orbit quantum number κ. Some numerical results are given too. The effect of the tensor interaction on the bound states is presented. It is shown that the tensor interaction removes the degeneracy between two states in the spin doublets. We also investigate the effects of the spatially-dependent mass on the bound states under the conditions of the spin symmetric limit in the absence of tensor interaction.
Keywords:  Dirac equation      spin and pseudospin symmetries      spatially-dependent mass      tensor interaction  
Received:  15 August 2012      Revised:  22 September 2012      Accepted manuscript online: 
PACS:  03.65.Pm (Relativistic wave equations)  
  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  
Fund: Project supported by the Scientific and Technical Research Council of Turkey.
Corresponding Authors:  M. Eshghia     E-mail:  eshgi54@gmail.com

Cite this article: 

M. Eshghi, M. Hamzavi, S. M. Ikhdair Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction 2013 Chin. Phys. B 22 030303

[1] Ortakaya S 2012 Chin. Phys. B 21 070303
[2] Chen C Y, Lu F L and You Y 2012 Chin. Phys. B 21 030302
[3] Eshghi M and Mehraban H 2012 Chin. J. Phys. 53 533
[4] Wang I C and Wong C Y 1998 Phys. Rev. D 38 348
[5] Mao G 2003 Phys. Rev. C 67 044318
[6] Furnstahl R J, Rusnak J J and Serot B D 1998 Nucl. Phys. A 632 607
[7] Alberto P, Lisboa R, Malheiro M and De Castro A S 2005 Phys. Rev. C 71 034313
[8] Salamin Y I, Hu S, Hatsagortsyan K Z and Keitel C H 2006 Phys. Rep. 427 41
[9] Saviz S, Rezaei Z and Aghamir F M 2012 Chin. Phys. B 21 094103
[10] Katsnelson M I, Novoselov K S and Geim A K 2006 Nature Phys. 2 620
[11] Galler M R and Kohn W 1993 Phys. Rev. Lett. 70 3103
[12] Puente A and Gasas M 1994 Comput. Mater. Sci. 2 441
[13] De Saavedra F A, Boronat J, Polls A and Fabrocini A 1994 Phys. Rev. B 50 4248
[14] Barranco M, Pi M, Gatica S M, Hernandez E S and Navarro J 1997 Phys. Rev. B 56 8997
[15] Puente A, Serra L I and Casas M 1994 Z. Phys. D. 31 283
[16] Serra L I and Lipparini E 1997 Europhys. Lett. 40 667
[17] Bastard G 1988 Wave Mechanics Applied to Semiconductor Heterostructures (Les Ulis: Les Editions de physique,)
[18] Schmidt A G M 2006 Phys. Lett. A 353 459
[19] Eshghi M and Mehraban H 2012 Few-Body Syst. 52 207
[20] Maghsoodi E, Hassanabadi H and Zarrinkamar S 2012 Few-Body Syst. 53 525
[21] Jia C S and De Souza Dutra A 2008 Ann. Phys. 323 566
[22] Ikhdair S M and Sever R 2010 Appl. Math. Phys. 216 545
[23] Xu Y, Su H and Jia C S 2008 J. Phys. A: Math. Theor. 41 255302
[24] Akcay H 2009 Phys. Lett. A 373 616
[25] Eshghi M and Hamzavi M 2012 Commun. Theor. Phys. 57 355
[26] Panella O, Biondini S and Arda A 2010 J. Phys. A: Math. Theor. 43 325302
[27] Alhaidari A D 2004 Phys. Lett. A 322 72
[28] Peng X L, Liu J Y and Jia C S 2006 Phys. Lett. A 352 478
[29] Eshghi M and Mehraban H 2011 Int. J. Phys. Sci. 6 6643
[30] Hamzavi M, Eshghi M and Ikhdair S M 2012 J. Math. Phys. 53 082101
[31] Zhang M C and Huang-Fu G Q 2012 Ann. Phys. 327 841
[32] Aydo\ gduO and Sever R 2010 Ann. Phys. 325 373
[33] Eshghi M 2012 Acta Sci. Tech. 34 207
[34] Wei G F and Dong S H 2010 Eur. Phys. J. A 43 185
[35] dos Santos V G C S, de Souza Dutra A and Hott M B 2009 Phys. Lett. A 373 3401
[36] Hamzavi M, Rajabi A A and Hassanabadi H 2010 Few-Body Syst. 48 171
[37] Bjorken J D and Drell S D 1964 Relativistic Quantum Mechanics (New York: McGraw-Hill)
[38] Agboola D 2010 arxiv/math-ph/1011.2368
[39] Arda A, Sever R and Tezcan C 2010 Cent. Eur. J. Phys. 8 843
[40] Meng J, Sugawara-Tanabe K, Yamaji S, Ring P and Arima A 1998 Phys. Rev. C 58 R628
[41] Meng J, Sugawara-Tanaha K, Yamaji S and Arima A 1999 Phys. Rev. C 59 154
[42] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
[43] Abramowitz M and Stegun I A 1970 Handbook Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)
[44] Greiner W 2000 Relativistic Quantum Mechanics-Wave Quation (3rd edn.) (Berlin: Springer-Verlag)
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[3] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[4] Exact solution of Dirac equation for Scarf potential with new tensor coupling potential for spin and pseudospin symmetries using Romanovski polynomials
A. Suparmi, C. Cari, U. A. Deta. Chin. Phys. B, 2014, 23(9): 090304.
[5] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[6] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[7] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[8] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[9] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[10] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[11] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[12] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[13] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[14] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[15] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
No Suggested Reading articles found!