Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 030307    DOI: 10.1088/1674-1056/23/3/030307
GENERAL Prev   Next  

The duality of a single particle with an n-dimensional internal degree of freedom

Jia Ai-Ai (贾爱爱)a b, Huang Jie-Hui (黄接辉)c, Feng Wei (冯伟)b, Zhang Tian-Cai (张天才)a, Zhu Shi-Yao (朱诗尧)a b
a The State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
b Beijing Computational Science Research Center, Beijing 100084, China;
c College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
Abstract  The wave–particle duality of a single particle with an n-dimensional internal degree of freedom is re-examined theoretically in a Mach–Zehnder interferometer. The famous duality relation D2+V2 ≤ 1 is always valid in this situation, where D is the distinguishability and V is the visibility. However, the sum of the particle information and the wave information, D2+V2, can be smaller than one for the input of a pure state if this initial pure state includes the internal degree of freedom of the particle, while the quantity D2+V2 is always equal to one when the internal degree of freedom of the particle is excluded.
Keywords:  wave–      particle duality      internal degree of freedom      single particle  
Received:  29 July 2013      Revised:  22 September 2013      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.Xa (Optical tests of quantum theory)  
  07.60.Ly (Interferometers)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603) and the National Natural Science Foundation of China (Grant Nos. 11125418 and 11364022).
Corresponding Authors:  Jia Ai-Ai     E-mail:  jiaaiai1988@163.com

Cite this article: 

Jia Ai-Ai (贾爱爱), Huang Jie-Hui (黄接辉), Feng Wei (冯伟), Zhang Tian-Cai (张天才), Zhu Shi-Yao (朱诗尧) The duality of a single particle with an n-dimensional internal degree of freedom 2014 Chin. Phys. B 23 030307

[1] Bohr N 1928 Naturwissenschaften 16 245
[2] Glauber R J 1986 Annals of the New York Academy of Sciences 480 336
[3] Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
[4] Ye L and Guo G C 2000 Chin. Phys. B 9 171
[5] Chen P, Long G L and Deng F G 2006 Chin. Phys. B 15 2228
[6] Rauch H and Summhammer J 1984 Phys. Lett. A 104 44
[7] Summhammer J, Rauch H and Tuppinger D 1987 Phys. Rev. A 36 4447
[8] Buks E, Schuster R, Heiblum M, Mahalu D and Umansky V 1998 Nature 391 871
[9] Dürr S, Nonn T and Rempe G 1998 Nature 395 33
[10] Liu H Y, Huang J H, Gao J R, Zubairy M S and Zhu S Y 2012 Phys. Rev. A 85 022106
[11] Jaeger G, Shimony A and Vaidman L 1995 Phys. Rev. A 51 54
[12] Englert B G 1996 Phys. Rev. Lett. 77 2154
[13] Marlow A R 1978 Mathematical Foundations of Quantum Mechanics (New York: Academic Press) pp. 9–48
[14] Wheeler J A and Zurek W H 1984 Quantum Theory and Measurement (New Jersey: Princeton Univ. Press) pp. 182–213
[15] Jacques V, Wu E, Grosshans F, Treussart F, Grangier P, Aspect A and Roch J F 2008 Phys. Rev. Lett. 100 220402
[16] Ionicioiu R and Terno D R 2011 Phys. Rev. Lett. 107 230406
[17] Tang J S, Li Y L, Xu X Y, Xiang G Y, Li C F and Guo G C 2012 Nat. Photon. 6 602
[18] Kaiser F, Coudreau T, Milman P, Ostrowsky D B and Tanzilli S 2012 Science 338 637
[19] Peruzzo A, Shadbolt P, Brunner N, Popescu S and O’Brien J L 2012 Science 338 634
[20] Dürr S, Nonn T and Rempe G 1998 Phys. Rev. Lett. 81 5705
[21] Schwindt P D D, Kwiat P G and Englert B G 1999 Phys. Rev. A 60 4285
[1] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[2] Quantum multicast communication over the butterfly network
Xing-Bo Pan(潘兴博), Xiu-Bo Chen(陈秀波), Gang Xu(徐刚), Zhao Dou(窦钊), Zong-Peng Li(李宗鹏), and Yi-Xian Yang(杨义先). Chin. Phys. B, 2022, 31(1): 010305.
[3] Wave-particle duality relation with a quantum N-path beamsplitter
Dong-Yang Wang(王冬阳), Jun-Jie Wu(吴俊杰), Yi-Zhi Wang(王易之), Yong Liu(刘雍), An-Qi Huang(黄安琪), Chun-Lin Yu(于春霖), and Xue-Jun Yang(杨学军). Chin. Phys. B, 2021, 30(5): 050302.
[4] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[5] Wave–particle duality in a Raman atom interferometer
Jia Ai-Ai (贾爱爱), Yang Jun (杨俊), Yan Shu-Hua (颜树华), Hu Qing-Qing (胡青青), Luo Yu-Kun (罗玉昆), Zhu Shi-Yao (朱诗尧). Chin. Phys. B, 2015, 24(8): 080302.
[6] Elementary analysis of interferometers for wave–particle duality test and the prospect of going beyond the complementarity principle
Li Zhi-Yuan (李志远). Chin. Phys. B, 2014, 23(11): 110309.
[7] Knotted picture of the whole complete quantum measurement process of quantum teleportation
Gu Zhi-Yu(顾之雨) and Qian Shang-Wu(钱尚武). Chin. Phys. B, 2010, 19(8): 080306.
No Suggested Reading articles found!