Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 120302    DOI: 10.1088/1674-1056/22/12/120302
GENERAL Prev   Next  

Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics

Akpan N. Ikota, Elham Maghsoodib, Eno J. Ibangaa, Saber Zarrinkamarc, Hassan Hassanabadib
a Theoretical Physics Group, Department of Physics, University of Uyo-Nigeria, Nigeria;
b Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran;
c Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran
Abstract  In this paper, we obtain approximate analytical solutions of the Dirac equation for the shifted Hulthén potential within the framework of spin and pseudospin symmetry limits for arbitrary spin–orbit quantum number κ using the supersymmetry quantum mechanics. The energy eigenvalues and the corresponding Dirac wave functions are obtained in closed forms.
Keywords:  Dirac equation      supersymmetry method      spin and pseudospin symmetries      shifted Hulthén potential  
Received:  21 April 2013      Revised:  13 May 2013      Accepted manuscript online: 
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Pm (Relativistic wave equations)  
  03.65.Ca (Formalism)  
Corresponding Authors:  Hassan Hassanabadi     E-mail:  h.hasanabadi@shahroodut.ac.ir

Cite this article: 

Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics 2013 Chin. Phys. B 22 120302

[1] Falaye B J and Oyewumi K J 2011 Afr. Rev. Phys. 6 0025
[2] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[3] Ginocchio J N 1997 Phys. Rev. C 69 034318
[4] Bohr A, Hamarrnoto I and Motelson B R 1982 Phys. Scr. 26 267
[5] Dudek J, Nazarewicz W, Szymanski Z and Lender G A 1987 Phys. Rev. Lett. 59 1405
[6] Troltenier D, Bahri C and Draayer J P1995 Nucl. Phys. A 586 53
[7] Ikot A N 2012 Few-Body Syst. 53 549
[8] Gu X Y, Ma Z Q and Dong S H 2003 Phys. Rev. A 67 062715
[9] Maghsoodi E, Hassanabadi H and Aydogdu O 2012 Phys. Scr. 86 015005
[10] Dong S H, Sun G H and Popov D 2003 J. Math. Phys. 44 4467
[11] Qiang W C and Dong S H 2006 J. Phys. A: Math. Gen. 39 8663
[12] Ma Z Q, Dong S H and Wang L Y 2006 Phys. Rev. A 74 012712
[13] Moshinsky M and Szczepanika A 1989 J. Phys. A: Math. Gen. 22 1817
[14] Wei G F and Dong S H 2009 Phys. Lett. A 373 2428
[15] Wei G F and Dong S H 2010 Eur. J. Phys. A 46 207
[16] Wei G F and Dong S H 2010 Phys. Lett. B 686 288
[17] Hassanabadi H, Maghsoodi E, Zarrinkamar S and Rahimov H 2012 J. Math. Phys. 53 022104
[18] Wei G F and Dong S H 2008 Phys. Lett. A 373 49
[19] Sun G H and Dong S H 2010 Mod. Phys. Lett. A 25 2849
[20] Wei G F and Dong S H 2010 Phys. Scr. 81 035009
[21] Ginocchio J N 2005 Phys. Rep. 414 165
[22] Taskin F and Kocak G 2011 Chin. Phys. B 20 070302
[23] Qiang W C and Dong S H 2005 Phys. Scr. 72 127
[24] Taskin F 2009 Int. J. Theor. Phys. 48 1142
[25] Jia C S, Guo F and Peng X L 2008 J. Phys. A: Math. Theor. 41 0653308
[26] de Castro A S, Alberto P, Lisboa R and Malheiro M 2006 Phys. Rev. C 73 0543009
[27] Hassanabadi H, Maghsoodi E, Zarrinkamar S and Rahimov H 2012 Chin. Phys. B 21 120302
[28] Aydogdu O, Maghsoodi E and Hassanabadi H 2013 Chin. Phys. B 22 010302
[29] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser)
[30] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[31] Wei G F and Dong S H 2009 Europhys. Lett. 87 40004
[32] Flugge S 1974 Practical Quantum Mechanics (Birlin: Springer)
[33] Dominguez-Adame F 1989 Phys. Lett. B 136 175
[34] Guo J Y, Meng J and Xu F X 2003 Chin. Phys. Lett. 20 602
[35] Qiang W C and Dong S H 2009 Phys. Scr. 79 045004
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[3] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[4] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[5] Exact solution of Dirac equation for Scarf potential with new tensor coupling potential for spin and pseudospin symmetries using Romanovski polynomials
A. Suparmi, C. Cari, U. A. Deta. Chin. Phys. B, 2014, 23(9): 090304.
[6] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[7] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[8] Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method
M. Eshghi, S. M. Ikhdair. Chin. Phys. B, 2014, 23(12): 120304.
[9] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[10] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[11] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[12] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[13] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[14] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[15] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
No Suggested Reading articles found!