Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 120304    DOI: 10.1088/1674-1056/23/12/120304
GENERAL Prev   Next  

Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method

M. Eshghia, S. M. Ikhdairb
a Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran;
b Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine
Abstract  

A relativistic Mie-type potential for spin-1/2 particles is studied. The Dirac Hamiltonian contains a scalar S(r) and a vector V(r) Mie-type potential in the radial coordinates, as well as a tensor potential U(r) in the form of Coulomb potential. In the pseudospin (p-spin) symmetry setting ∑=Cps and △ =V(r), an analytical solution for exact bound states of the corresponding Dirac equation is found. The eigenenergies and normalized wave functions are presented and particular cases are discussed with any arbitrary spin–orbit coupling number κ. Special attention is devoted to the case ∑ =0 for which p-spin symmetry is exact. The Laplace transform approach (LTA) is used in our calculations. Some numerical results are obtained and compared with those of other methods.

Keywords:  tensor interaction      p-spin symmetry      Dirac equation      Mie-type potential      Laplace transform approach  
Received:  25 February 2014      Revised:  22 April 2014      Accepted manuscript online: 
PACS:  03.65.Pm (Relativistic wave equations)  
  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  
Corresponding Authors:  M. Eshghi, S. M. Ikhdair     E-mail:  eshgi54@gmail.com,kpeshghi@ihu.ac.ir;sikhdair@gmail.com

Cite this article: 

M. Eshghi, S. M. Ikhdair Relativistic effect of pseudospin symmetry and tensor coupling on the Mie-type potential via Laplace transformation method 2014 Chin. Phys. B 23 120304

[28] Bayrak O, Boztosun I and Ciftci H 2007 Int. J. Quantum Chem. 107 540
[1] Chen T, Liu J Y and Jia C S 2009 Phys. Scr. 79 055002
[29] Hall R L and Saad N 1998 J. Chem. Phys. 109 2983
[2] Jia C S, Liu J Y, Wang P Q and Lin X 2009 Int. J. Theor. Phys. 48 2633
[3] Jia C S, Guo P, Diao Y F, Yi L Z and Xie X J 2007 Eur. Phys. J. A 34 41
[30] Setare M R and Karimi E 2007 Phys. Scr. 75 90
[4] Maghsoodi E, Hassanabadi H and Zarrinkamar S 2012 Few-Body Syst.
[31] Aydoğdu and Sever R 2010 Ann. Phys. 325 373
[5] Zhang M C and Huang-Fu G Q 2012 Ann. Phys. 327 841
[32] Hamzavi M, Rajabi A A and Hassanabadi H 2010 Few-Body Syst. 48 171
[6] Xu Y, Su H and Jia C S 2008 J. Phys. A: Math. Theor. 41 255302
[33] Ikhdair S M and Sever R 2010 Appl. Math. Comput. 216 911
[7] Akcay H 2009 Phys. Lett. A 373 616
[34] Eshghi M, Hamzavi M and Ikhdair S M 2012 Adv. High Energy Phys. 2012 873619
[8] Ikhdair S M 2012 Cent. Eur. J. Phys. 10 361
[9] Eshghi M and Mehraban H 2012 Few-Body Syst. 52 207
[35] Chiapparini M, Gatone A O and Jennings B K 1991 Nucl. Phys. A 529 589
[10] Eshghi M and Hamzavi M 2012 Commun. Theor. Phys. 57 355
[36] Lisboa R, Malheiro M, de Castro A S and Fiolhais M 2004 Phys. Rev. C 69 024319
[11] Eshghi M and Mehraban H 2012 Chin. J. Phys. 50 533
[37] Castro L B 2012 Phys. Rev. C 86 052201
[12] Hamzavi M, Eshghi M and Ikhdair S M 2012 J. Math. Phys. 53 082101
[38] Bjorken J D and Drell S D 1964 Relativistic Quantum Mechanics (Niw York: McGraw-Hill)
[13] Eshghi M 2012 Acta Sci. Tech. 34 207
[14] Ikhdair S M and Sever R 2011 J. Phys. A: Math. Theor. 44 355301
[39] Mao G 2003 Phys. Rev. C 67 044318
[15] Wang I C and Wong C Y 1988 Phys. Rev. D 38 348
[40] Furnstahl R J, Rusnak J J and Serot B D 1998 Nucl. Phys. A 632 607
[16] Salamin Y I, Hu S, Hatsagortsyan K Z and Keitel C H 2006 Phys. Rep. 427 41
[41] Alberto P, Lisboa R, Malheiro M and de Castro A S 2005 Phys. Rev. C 71 034313
[42] Arima A, Harvey M and Shimizu K 1969 Phys. Lett. B 30 517
[17] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[43] Hecht K T and Adler A 1969 Nucl. Phys. A 137 129
[18] Molski M 2007 Phys. Rev. A 76 022107
[44] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[19] Hamzavi M, Ikhdair S M and Thylwe K E 2012 J. Math. Chem. 51 227
[45] Ginocchio J N 2005 Phys. Rep. 414 165
[20] Flügge S 1971 Practical Quantum Mechanics I (Berlin: Springer)
[46] Meng J, Sugawara-Tanabe K, Yamaji S, Ring P and Arima A 1998 Phys. Rev. C 58 R628
[21] Ikhdair S M and Sever R 2009 J. Math. Chem. 45 1137
[47] Meng J, Sugawara-Tanaha K, Yamaji S and Arima A 1999 Phys. Rev. C 59 154
[22] Ikhdair S M and Sever R 2008 J. Mol. Struct. (Theochem) 855 13
[23] Erkoç Ş and Sever R 1986 Phys. Rev. D 33 588
[48] Doetsch G 1961 Guide to the Applications of Laplace Transforms (Princeton: Princeton University Press)
[24] Erkoç Ş and Sever R 1984 Phys. Rev. D 30 2117
[49] Chen G 2004 Phys. Lett. A 326 55
[25] Agboola D 2011 Acta Phys. Polonica A 120 371
[50] Schrodinger E 1926 Ann. Phys. 79 361
[26] Arda A and Sever R 2012 J. Math. Chem. 50 971
[51] Swainson R A and Drake G W F 1991 J. Phys. A: Math. Gen. 24 79
[27] Ikhdair S M and Sever R 2007 Cent. Eur. J. Phys. 5 516
[52] Chen G 2005 Chin. Phys. 14 1075
[28] Bayrak O, Boztosun I and Ciftci H 2007 Int. J. Quantum Chem. 107 540
[53] Spiegel M R 1965 Schaum's Outline of Theory and Problems of Laplace Transforms (New York: Schaum Publishing Co.)
[29] Hall R L and Saad N 1998 J. Chem. Phys. 109 2983
[54] Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)
[30] Setare M R and Karimi E 2007 Phys. Scr. 75 90
[55] Ikhdair S and Sever R 2011 J. Math. Phys. 52 122108
[31] Aydoğdu and Sever R 2010 Ann. Phys. 325 373
[56] Ikhdair S 2011 J. Math. Phys. 52 052303
[32] Hamzavi M, Rajabi A A and Hassanabadi H 2010 Few-Body Syst. 48 171
[57] Ikhdair S M and Sever R 2010 Appl. Math. Comput. 216 545
[33] Ikhdair S M and Sever R 2010 Appl. Math. Comput. 216 911
[58] Ikhdair S M and Sever R 2012 Appl. Math. Comput. 218 10082
[34] Eshghi M, Hamzavi M and Ikhdair S M 2012 Adv. High Energy Phys. 2012 873619
[35] Chiapparini M, Gatone A O and Jennings B K 1991 Nucl. Phys. A 529 589
[59] Ikhdair S M, Berkdemir C and Sever R 2011 Appl. Math. Comput. 217 9019
[36] Lisboa R, Malheiro M, de Castro A S and Fiolhais M 2004 Phys. Rev. C 69 024319
[60] Hamzavi M, Ikhdair S M and Thylwe K E 2012 Int. J. Mod. Phys. E 21 1250097
[37] Castro L B 2012 Phys. Rev. C 86 052201
[38] Bjorken J D and Drell S D 1964 Relativistic Quantum Mechanics (Niw York: McGraw-Hill)
[39] Mao G 2003 Phys. Rev. C 67 044318
[40] Furnstahl R J, Rusnak J J and Serot B D 1998 Nucl. Phys. A 632 607
[41] Alberto P, Lisboa R, Malheiro M and de Castro A S 2005 Phys. Rev. C 71 034313
[42] Arima A, Harvey M and Shimizu K 1969 Phys. Lett. B 30 517
[43] Hecht K T and Adler A 1969 Nucl. Phys. A 137 129
[44] Ginocchio J N 1997 Phys. Rev. Lett. 78 436
[45] Ginocchio J N 2005 Phys. Rep. 414 165
[46] Meng J, Sugawara-Tanabe K, Yamaji S, Ring P and Arima A 1998 Phys. Rev. C 58 R628
[47] Meng J, Sugawara-Tanaha K, Yamaji S and Arima A 1999 Phys. Rev. C 59 154
[48] Doetsch G 1961 Guide to the Applications of Laplace Transforms (Princeton: Princeton University Press)
[49] Chen G 2004 Phys. Lett. A 326 55
[50] Schrodinger E 1926 Ann. Phys. 79 361
[51] Swainson R A and Drake G W F 1991 J. Phys. A: Math. Gen. 24 79
[52] Chen G 2005 Chin. Phys. 14 1075
[53] Spiegel M R 1965 Schaum's Outline of Theory and Problems of Laplace Transforms (New York: Schaum Publishing Co.)
[54] Abramowitz M and Stegun I A 1970 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)
[55] Ikhdair S and Sever R 2011 J. Math. Phys. 52 122108
[56] Ikhdair S 2011 J. Math. Phys. 52 052303
[57] Ikhdair S M and Sever R 2010 Appl. Math. Comput. 216 545
[58] Ikhdair S M and Sever R 2012 Appl. Math. Comput. 218 10082
[59] Ikhdair S M, Berkdemir C and Sever R 2011 Appl. Math. Comput. 217 9019
[60] Hamzavi M, Ikhdair S M and Thylwe K E 2012 Int. J. Mod. Phys. E 21 1250097
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method
Resita Arum Sari, A Suparmi, C Cari. Chin. Phys. B, 2016, 25(1): 010301.
[3] Approximate analytical solution of the Dirac equation with q-deformed hyperbolic Pöschl-Teller potential and trigonometric Scarf Ⅱ non-central potential
Ade Kurniawan, A. Suparmi, C. Cari. Chin. Phys. B, 2015, 24(3): 030302.
[4] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
[5] Solution of Dirac equation around a charged rotating black hole
Lü Yan (吕嫣), Hua Wei (花巍). Chin. Phys. B, 2014, 23(4): 040403.
[6] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[7] Spin and pseudospin symmetric Dirac particles in the field of Tietz–Hua potential including Coulomb tensor interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(9): 090305.
[8] Pseudoscalar Cornell potential for a spin-1/2 particle under spin and pseudospin symmetries in 1+1 dimension
M. Hamzavi, A. A. Rajabi. Chin. Phys. B, 2013, 22(9): 090301.
[9] Relativistic symmetries in the Hulthén scalar–vector–tensor interactions
Majid Hamzavi, Ali Akbar Rajabi. Chin. Phys. B, 2013, 22(8): 080302.
[10] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[11] Relativistic symmetries in Rosen–Morse potential and tensor interaction using the Nikiforov–Uvarov method
Sameer M Ikhdair, Majid Hamzavi. Chin. Phys. B, 2013, 22(4): 040302.
[12] Exact solutions of Dirac equation with Pöschl–Teller double-ring-shaped Coulomb potential via Nikiforov–Uvarov method
E. Maghsoodi, H. Hassanabadi, S. Zarrinkamar. Chin. Phys. B, 2013, 22(3): 030302.
[13] Relativistic symmetry of position-dependent mass particle in Coulomb field including tensor interaction
M. Eshghi, M. Hamzavi, S. M. Ikhdair. Chin. Phys. B, 2013, 22(3): 030303.
[14] Spin and pseudospin symmetries of the Dirac equation with shifted Hulthén potential using supersymmetric quantum mechanics
Akpan N. Ikot, Elham Maghsoodi, Eno J. Ibanga, Saber Zarrinkamar, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(12): 120302.
[15] Eigen-spectra in the Dirac-attractive radial problem plus a tensor interaction under pseudospin and spin symmetry with the SUSY approach
S. Arbabi Moghadam, H. Mehraban, M. Eshghi. Chin. Phys. B, 2013, 22(10): 100305.
No Suggested Reading articles found!