Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 030204    DOI: 10.1088/1674-1056/23/3/030204
GENERAL Prev   Next  

A new explicit multisymplectic integrator for the Kawahara-type equation

Cai Wen-Jun (蔡文君), Wang Yu-Shun (王雨顺)
Key Laboratory for NSLSCS of Jiangsu Province, School of Mathematics and Sciences, Nanjing Normal University, Nanjing 210023, China
Abstract  We derive a new multisymplectic integrator for the Kawahara-type equation which is a fully explicit scheme and thus needs less computation cost. Multisympecticity of such scheme guarantees the long-time numerical behaviors. Numerical experiments are presented to verify the accuracy of this scheme as well as the excellent performance on invariant preservation for three kinds of Kawahara-type equations.
Keywords:  Kawahara-type equation      multisymplectic integrator      Euler-box scheme      adjoint scheme  
Received:  13 November 2013      Revised:  16 December 2013      Accepted manuscript online: 
PACS:  02.70.Bf (Finite-difference methods)  
  03.65.Ge (Solutions of wave equations: bound states)  
  45.10.Na (Geometrical and tensorial methods)  
  47.10.Df (Hamiltonian formulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11271195 and 11271196) and the Project of Graduate Education Innovation of Jiangsu Province, China (Grant No. CXZZ12-0385).
Corresponding Authors:  Wang Yu-Shun     E-mail:  wangyushun@njnu.edu.cn

Cite this article: 

Cai Wen-Jun (蔡文君), Wang Yu-Shun (王雨顺) A new explicit multisymplectic integrator for the Kawahara-type equation 2014 Chin. Phys. B 23 030204

[1] Kawahara T 1972 J. Phys. Soc. Jpn. 33 260
[2] Hunter J K and Scheurle J 1988 Physica D 32 253
[3] Kaya D and Al-Khaled K 2007 Phys. Lett. A 363 433
[4] Yuan J M, Shen J and Wu J H 2008 J. Sci. Comput. 34 48
[5] Hu W P and Deng Z C 2008 Chin. Phys. B 17 3923
[6] Ceballos J C, Sepúlveda M and Villagrán O P V 2007 Appl. Math. Comput. 190 912
[7] Bibi N, Tirmizi S I A and Haq S 2011 Appl. Math. 2 608
[8] Marsden J E, Patrick G W and Shkoller S 1998 Commun. Math. Phys. 199 351
[9] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[10] Reich S 2000 J. Comput. Phys. 157 473
[11] Chen J B 2004 Chin. Phys. Lett. 21 37
[12] Hong J L, Liu Y, Munthe-Kaas H and Zanna A 2006 Appl. Numer. Math. 56 814
[13] Chen J B and Qin M Z 2001 Electr. Trans. Numer. Anal. 12 193
[14] Wang J 2008 Chin. Phys. Lett. 25 3531
[15] Ascher U M and Malachlan R I 2004 Appl. Numer. Math. 48 255
[16] Wang Y S, Wang B and Chen X 2007 Chin. Phys. Lett. 24 312
[17] Sun Y J and Qin M Z 2004 J. Comput. Math. 22 611
[18] Kong L H, Hong J L and Zhang J J 2010 J. Comput. Phys. 229 4259
[19] Cai J X, Yang B and Liang H 2013 Chin. Phys. B 22 030209
[20] Cai J X, Wang Y S and Qiao Z H 2009 J. Math. Phys. 50 033510
[21] Chen Y M, Song S H and Zhu H J 2012 Appl. Math. Comput. 218 5552
[22] Cohen D, Owren B and Raynaud X 2008 J. Comput. Phys. 227 5492
[23] Wang Y S and Hong J L 2013 Commun. Appl. Math. Comput. 27 163
[24] Bridges T J and Reich S 2006 J. Phys. A: Math. Gen. 39 5287
[25] Qin M Z and Wang Y S 2011 Structure-Preserving Algorithms for Partial Differential Equations (Hangzhou: Zhejiang Science and Technology Press) (in Chinese)
[26] Bridges T J and Derks G 2002 SIAM J. Math. Anal. 33 1356
[27] Gotay M J 1991 Mechanics, Analysis and Geometry 200 Years after Lagrange (Amsterdam: North Holland) p. 203
[28] Sirendaoreji 2004 Chaos Soliton. Fract. 19 147
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[4] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[5] Novel energy dissipative method on the adaptive spatial discretization for the Allen-Cahn equation
Jing-Wei Sun(孙竟巍), Xu Qian(钱旭), Hong Zhang(张弘), and Song-He Song(宋松和). Chin. Phys. B, 2021, 30(7): 070201.
[6] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[7] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[8] Compact finite difference schemes for the backward fractional Feynman-Kac equation with fractional substantial derivative
Jiahui Hu(胡嘉卉), Jungang Wang(王俊刚), Yufeng Nie(聂玉峰), Yanwei Luo(罗艳伟). Chin. Phys. B, 2019, 28(10): 100201.
[9] New hybrid FDTD algorithm for electromagnetic problem analysis
Xin-Bo He(何欣波), Bing Wei(魏兵), Kai-Hang Fan(范凯航), Yi-Wen Li(李益文), Xiao-Long Wei(魏小龙). Chin. Phys. B, 2019, 28(7): 074102.
[10] Reducing the calculation workload of the Green function for electromagnetic scattering in a Schwarzschild gravitational field
Shou-Qing Jia(贾守卿). Chin. Phys. B, 2019, 28(7): 070401.
[11] Second order conformal multi-symplectic method for the damped Korteweg-de Vries equation
Feng Guo(郭峰). Chin. Phys. B, 2019, 28(5): 050201.
[12] Numerical study of optical trapping properties of nanoparticle on metallic film with periodic structure
Cheng-Xian Ge(葛城显), Zhen-Sen Wu(吴振森), Jing Bai(白靖), Lei Gong(巩蕾). Chin. Phys. B, 2019, 28(2): 024203.
[13] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[14] Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays
Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生). Chin. Phys. B, 2018, 27(10): 100204.
[15] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
No Suggested Reading articles found!