Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 034701    DOI: 10.1088/1674-1056/ab6834
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A mass-conserved multiphase lattice Boltzmann method based on high-order difference

Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英)
Guangxi Collaborative Innovation Center of Multi-source Information Integration and Intelligent Processing, Guangxi Normal University, Guilin 541004, China
Abstract  The Z-S-C multiphase lattice Boltzmann model [Zheng, Shu, and Chew (ZSC), J. Comput. Phys. 218, 353 (2006)] is favored due to its good stability, high efficiency, and large density ratio. However, in terms of mass conservation, this model is not satisfactory during the simulation computations. In this paper, a mass correction is introduced into the ZSC model to make up the mass leakage, while a high-order difference is used to calculate the gradient of the order parameter to improve the accuracy. To verify the improved model, several three-dimensional multiphase flow simulations are carried out, including a bubble in a stationary flow, the merging of two bubbles, and the bubble rising under buoyancy. The numerical simulations show that the results from the present model are in good agreement with those from previous experiments and simulations. The present model not only retains the good properties of the original ZSC model, but also achieves the mass conservation and higher accuracy.
Keywords:  lattice Boltzmann method      high-order difference      mass conservation      large density ratio  
Received:  25 June 2019      Revised:  31 October 2019      Accepted manuscript online: 
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  05.50.+q (Lattice theory and statistics)  
  47.61.Jd (Multiphase flows)  
  02.70.Bf (Finite-difference methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11862003 and 81860635), the Key Project of the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2017GXNSFDA198038), the Project of Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2018GXNSFAA281302), the Project for Promotion of Young and Middle-aged Teachers' Basic Scientific Research Ability in Guangxi Universities, China (Grant No. 2019KY0084), and the “Bagui Scholar” Teams for Innovation and Research Project of Guangxi Zhuang Autonomous Region, China, and the Graduate Innovation Program of Guangxi Normal University, China (Grant No. JXYJSKT-2019-007).
Corresponding Authors:  Chao-Ying Zhang     E-mail:  zhangcy@gxnu.edu.cn

Cite this article: 

Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英) A mass-conserved multiphase lattice Boltzmann method based on high-order difference 2020 Chin. Phys. B 29 034701

[1] Ye H F, Kuang B and Yang Y H 2019 Chin. Phys. B 28 014701
[2] Wen B H, Chen Y Y, Zhang R L, Zhang C Y and Fang H P 2013 Chin. Phy. Lett. 30 064701
[3] Hu M D, Zhang Q Y, Sun D K and Zhu M F 2019 Acta Phys. Sin. 68 030501 (in Chinese)
[4] Gunstensen A K, Rothman D H, Zaleski S and Zanetti G 1991 Phys. Rev. A 43 4320
[5] Shan X and Chen H 1993 Phys. Rev. E 47 1815
[6] Shan X and Chen H 1994 Phys. Rev. E 49 2941
[7] Swift M R, Osborn W R and Yeomans J M 1995 Phys. Rev. Lett. 75 830
[8] He X Y, Chen S Y and Zhang R Y 1999 J. Comput. Phys. 152 642
[9] Wang Y, Shu C, Shao J Y, Wu J and Niu X D 2015 J. Comput. Phys. 290 336
[10] Inamuro T, Konishi N and Ogino F 2000 Comput. Phys. Commun. 129 32
[11] Lee T and Lin C L 2005 J. Comput. Phys. 206 16
[12] Zheng H W, Shu C and Chew Y T 2006 J. Comput. Phys. 218 353
[13] Huang H, Zheng H, Lu X and Shu C 2010 Int. J. Numer. Meth. Fluids 63 119
[14] Cheng M, Hua J and Lou J 2010 Comput. Fluids 39 260
[15] He B, Yang S C, Qin Z R, Wen B H and Zhang C Y 2017 Sci. Rep. 7 11841
[16] Van Der Sman R G M and Van Der Graaf S 2008 Comput. Phys. Commun. 178 492
[17] Zheng L, Lee T, Guo Z and David R 2014 Phys. Rev. E 89 033302
[18] Son G 2001 Num. Heat Tr. B-Fund. 39 509
[19] Chao J, Mei R, Singh R and Wei S 2011 J. Num. Meth. Fluid 66 622
[20] Huang H, Huang J and Lu X 2014 J. Comput. Phys. 269 386
[21] Niu X D, Li Y and Ma Y R 2018 Phys. Fluids 30 013302
[22] Shao J Y, Shu C, Huang H B and Chew Y T 2014 Phys. Rev. E 89 033309
[23] Kupershtokh A L, Medvedev D A and Karpov D I 2009 Comput. Math. Appl. 58 965
[24] Jacqmin D 1999 J. Comput. Phys. 155 96
[25] Kendon V M, Cates M E, Desplat J, Pagonabarraga I and Bladon P 2001 J. Fluid Mech. 440 147
[26] Takada N, Misawa M, Tomiyama A and Hosokawa S 2001 J. Nucl. Sci. Technol. 38 330
[27] Jamet D, Torres D and Brackbill J U 2002 J. Comput. Phys. 182 262
[28] Rowlinson J S and Widom B 1989 Molecular Theory of Capillarity (Oxfordshire: Clarendon Press) p. 356
[29] Jamet D, Lebaigue O, Coutris N and Delhaye J M 2001 J. Comput. Phys. 169 624
[30] Lamura A and Succi S 2003 Int. J. Mod. Phys. B 17 145
[31] Wang Y 2011 Mathematics in Practice and Theory 41 16 (in Chinese)
[32] Wang Y 2009 J. Tianjin Univ. Technol. 25 37 (in Chinese)
[33] Ding H, Spelt P D M and Shu C 2007 J. Comput. Phys. 226 2078
[34] Batchelor G K 1967 An introduction to fluid dynamics (London: Cambridge University Press) p. 658
[35] Premnath K N and Abraham J 2007 J. Comput. Phys. 224 539
[36] Bhaga D and Weber M E 1981 J. Fluid Mech. 105 61
[37] Clift R, Grace J R and Weber M E 2005 Bubbles, drops, and particles (New York: Dover Publications) p. 381
[38] Hua J, Stene J F and Ping L 2008 J. Comput. Phys. 227 3358
[39] Ren F, Song B and Sukop M C 2016 Ad. Water Resour. 97 100
[40] Li X, Gao D Y and Hou B L 2019 Chem. Eng. Sci. 193 76
[41] Hua J and Lou J 2007 J. Comput. Phys. 222 769
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[3] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[4] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[5] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[6] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[7] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[8] A multicomponent multiphase lattice Boltzmann model with large liquid-gas density ratios for simulations of wetting phenomena
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2017, 26(8): 084701.
[9] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[10] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[11] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[12] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
[13] Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow
Hai-Qiong Xie(谢海琼), Zhong Zeng(曾忠), Liang-Qi Zhang(张良奇). Chin. Phys. B, 2016, 25(1): 014702.
[14] A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows
Li Kai (李凯), Zhong Cheng-Wen (钟诚文). Chin. Phys. B, 2015, 24(5): 050501.
[15] Lattice Boltzmann simulation of liquid–vapor system by incorporating a surface tension term
Song Bao-Wei (宋保维), Ren Feng (任峰), Hu Hai-Bao (胡海豹), Huang Qiao-Gao (黄桥高). Chin. Phys. B, 2015, 24(1): 014703.
No Suggested Reading articles found!