Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 030203    DOI: 10.1088/1674-1056/23/3/030203
GENERAL Prev   Next  

Second-order two-scale computations for conductive–radiative heat transfer problem in periodic porous materials

Yang Zhi-Qiang (杨志强)a, Cui Jun-Zhi (崔俊芝)b, Li Bo-Wen (李博文)b
a Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710129, China;
b LSEC, ICMSEC, Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In this paper, a kind of second-order two-scale (SOTS) computation is developed for conductive–radiative heat transfer problem in periodic porous materials. First of all, by the asymptotic expansion of the temperature field, the cell problem, homogenization problem, and second-order correctors are obtained successively. Then, the corresponding finite element algorithms are proposed. Finally, some numerical results are presented and compared with theoretical results. The numerical results of the proposed algorithm conform with those of the FE algorithm well, demonstrating the accuracy of the present method and its potential applications in thermal engineering of porous materials.
Keywords:  second-order two-scale (SOTS) computations      periodic porous materials      conductive–radiative heat transfer  
Received:  16 May 2013      Revised:  07 August 2013      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  44.40.+a (Thermal radiation)  
  02.60.-x (Numerical approximation and analysis)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB832702) and the National Natural Science Foundation of China (Grant No. 90916027).
Corresponding Authors:  Yang Zhi-Qiang     E-mail:  yangzhiqiang@mail.nwpu.edu.cn

Cite this article: 

Yang Zhi-Qiang (杨志强), Cui Jun-Zhi (崔俊芝), Li Bo-Wen (李博文) Second-order two-scale computations for conductive–radiative heat transfer problem in periodic porous materials 2014 Chin. Phys. B 23 030203

[1] Liu S T and Zhang Y C 2006 Multidiscipline Modeling in Mat. and Str. 2 327
[2] Tiihonen T 1997 Math. Method. Appl. Sci. 20 47
[3] Bakhvalov N S 1981 Differ. Uraun. 17 1765
[4] Daryabeigi K 1999 37th AIAA Aerospace Sciences Meeting and Exhibit, January 11–14, 1999, Reno, NV
[5] Gibson L J and Ashby M F 1997 Cellular Solids: Structure and Properties (2nd Edn.) (Cambridge: Cambridge University Press)
[6] EI Ganaoui K 2006 Homogénéisation de modèles de transferts thermiques et radiatifs: Application au coeur des réacteurs À caloporteur gaz (PhD Thesis) (Ecole Polytechnique)
[7] Terada K, Kurumatani M, Ushida T and Kikuchi N 2010 Comp. Mech. 46 269
[8] Mezedur M, Kaviany M and Moore W 2004 AIChE J. 48 15
[9] Jen T C and Yan T Z 2005 Int. J. Heat Mass Tran. 48 3995
[10] Xu R N and Jiang P X 2008 Int. J. Heat Fluid FL. 29 1447
[11] Allaire G and EI Ganaoui K 2009 Multiscale Model. Sim. 7 1148
[12] Allaire G and Habibi Z 2013 SIAM J. Math. Anal. 45 1136
[13] Yang Z Q, Cui J Z, Nie Y F and Ma Q 2012 CMES: Comp. Model. Eng. 88 419
[14] Bensoussan A, Lions J L and Papanicolaou G 1978 Asymptotic Analysis for Periodic Structure (Amsterdam: North-Holland)
[15] Oleinik O A, Shamaev A S and Yosifian G A 1992 Mathematical Problems in Elasticity and Homogenization (Amsterdam: North-Holland)
[16] Cui J Z and Yu X G 2006 Acta Mech. Sin. 22 581
[17] Feng Y P, Cui J Z and Deng M X 2009 Acta Phys. Sin. 58 S327 (in Chinese)
[18] Han F, Cui J Z and Yu Y 2009 Acta Phys. Sin. 58 S1 (in Chinese)
[19] He W M, Qiao H and Chen W Q 2013 Compos. Part B-Eng. 45 742
[20] He W M, Qiao H and Chen W Q 2013 Eur J Mech ASolid 40 123
[21] Luo J L and Cao L Q 2004 J. Engrg. Thermophys. 29 1711 (in Chinese)
[22] ShaoY F, Yang X, Zhao X and Wang S Q 2012 Chin. Phys. B 21 083101
[23] Yu X X and Wang C Y 2013 Chin. Phys. B 21 027101
[24] Amosov A A 2011 J. Math. Sci. 176 361
[1] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[2] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[3] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[4] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[5] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
[6] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[7] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[8] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[9] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[10] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[11] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[12] Prediction of epidemics dynamics on networks with partial differential equations: A case study for COVID-19 in China
Ru-Qi Li(李汝琦), Yu-Rong Song(宋玉蓉), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2021, 30(12): 120202.
[13] Analysis of the rogue waves in the blood based on the high-order NLS equations with variable coefficients
Ying Yang(杨颖), Yu-Xiao Gao(高玉晓), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2021, 30(11): 110202.
[14] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[15] Dynamics of a stochastic rumor propagation model incorporating media coverage and driven by Lévy noise
Liang-An Huo(霍良安), Ya-Fang Dong(董雅芳), and Ting-Ting Lin(林婷婷). Chin. Phys. B, 2021, 30(8): 080201.
No Suggested Reading articles found!