Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 027305    DOI: 10.1088/1674-1056/23/2/027305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A strategy of enhancing the photoactivity of TiO2 containing nonmetal and transition metal dopants

Li Wei (李伟), Wei Shi-Hao (韦世豪), Duan Xiang-Mei (段香梅)
Faculty of Science, Ningbo University, Ningbo 315211, China
Abstract  An effective structural codoping approach is proposed to modify the photoelectrochemical (PEC) properties of anatase TiO2 by being doped with nonmetal (N or/and C) and transition metal (Re) elements. The electronic structures and formation energies of different doped systems are investigated using spin-polarized density functional theory. We find that (C, Re) doped TiO2, with a low formation energy and a large binding energy, reduces the band gap to a large extent, thus it could contribute to the significant enhancement of the photocatalytic activity in the visible-light region. It should be pointed out that, to be successful, the proper proportion of the dopants C and Re should be controlled, so that reasonable PEC properties can be achieved.
Keywords:  codoping      photoactivity      density functional theory      formation energy  
Received:  23 July 2013      Revised:  11 September 2013      Accepted manuscript online: 
PACS:  73.50.Pz (Photoconduction and photovoltaic effects)  
  61.72.Bb (Theories and models of crystal defects)  
  71.20.Nr (Semiconductor compounds)  
  84.60.-h (Direct energy conversion and storage)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074135).
Corresponding Authors:  Duan Xiang-Mei     E-mail:  duanxiangmei@nbu.edu.cn
About author:  73.50.Pz; 61.72.Bb; 71.20.Nr; 84.60.-h

Cite this article: 

Li Wei (李伟), Wei Shi-Hao (韦世豪), Duan Xiang-Mei (段香梅) A strategy of enhancing the photoactivity of TiO2 containing nonmetal and transition metal dopants 2014 Chin. Phys. B 23 027305

[1] Fujishima A and Honda K 1972 Nature 238 37
[2] Grätzel M 2001 Nature 414 338
[3] Hoffmann M R, Martin S T, Choi W and Bahnemann D W 1995 Chem. Rev. 95 69
[4] Chen X and Mao S 2007 Chem. Rev. 107 2891
[5] Yin W J, Tang H W, Wei S H, Al-Jassim M, Turner J and Yan Y F 2010 Phys. Rev. B 82 045106
[6] Gai Y Q, Li J B, Li S S, Xia J B and Wei S H 2009 Phys. Rev. Lett. 102 036402
[7] Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269
[8] Yang K S, Dai Y, Huang B B and Whangbo M H 2009 J. Phys. Chem. C 113 2624
[9] Khan S, Al-Shahry M and Ingler W B 2002 Science 297 2243
[10] Lu J B, Dai Y, Guo M, Yu L, Lai K R and Huang B B 2012 Appl. Phys. Lett. 100 102114
[11] Valentin C D, Pacchioni G and Selloni A 2004 Phys. Rev. B 70 085116
[12] Lindgren T, Mwabora J M, Avenda E, Jonsson J, Hoel E, Granqvist C G and Lindquist S E 2003 J. Phys. Chem. B 107 5709
[13] Irie H, Watanabe Y and Hashimoto K 2003 J. Phys. Chem. B 107 5483
[14] Lin Z, Orlov A, Lambert R M and Payne M C 2005 J. Phys. Chem. B 109 20948
[15] Choi W, Termin A and Hoffmann M R 1994 J. Phys. Chem. 98 13669
[16] Mu W, Herrmann J and Pichat P 1989 Catal. Lett. 3 73
[17] Peng H W, Li J B, Li S S and Xia J B 2008 J. Phys.: Condens. Matter 20 125207
[18] Kulik H, Cococcioni M, Scherlis D A and Marzari N 2006 Phys. Rev. Lett. 97 103001
[19] Long R and English N J 2011 Phys. Rev. B 83 155209
[20] Couselo N, Einschlag F S, Candal R J and Jobbagy M 2008 J. Phys. Chem. C 112 1094
[21] Gao B F, Ma Y, Cao Y A, Yang W S and Yao J N 2006 J. Phys. Chem. B 110 14391
[22] Long R and English N J 2009 Appl. Phys. Lett. 94 132102
[23] Zhu W G, Qiu X F, Lancu V, Chen X Q, Pan H, Wang W, Dimitrijevic N M, Rajh T, Meyer H M, Paranthaman M P, Stocks G M, Weitering H H, Gu B H, Eres G and Zhang Z Y 2009 Phys. Rev. Lett. 103 226401
[24] Celik V and Mete E 2012 Phys. Rev. B 86 205112
[25] Wang P, Liu Z R, Lin F, Zhou G, Wu J, Duan W H, Gu B L and Zhang S B 2010 Phys. Rev. B 82 193103
[26] Wang D, Zou Y H, Wen S C and Fan D Y 2009 Appl. Phys. Lett. 95 012106
[27] Baroni S, Gironcoli S, Corso A D and Giammozzi P http://www.pwscf.org
[28] Blöchl P E 1994 Phys. Rev. B 50 17953
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Vanderbilt D 1990 Phys. Rev. B 41 7892
[31] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[32] Park C H and Chadi D J 1995 Phys. Rev. Lett. 75 1134
[33] Yin W J, Wei Su-huai, Al-Jassim M and Yan Y F 2011 Phys. Rev. Lett. 106 066801
[34] Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!