CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A strategy of enhancing the photoactivity of TiO2 containing nonmetal and transition metal dopants |
Li Wei (李伟), Wei Shi-Hao (韦世豪), Duan Xiang-Mei (段香梅) |
Faculty of Science, Ningbo University, Ningbo 315211, China |
|
|
Abstract An effective structural codoping approach is proposed to modify the photoelectrochemical (PEC) properties of anatase TiO2 by being doped with nonmetal (N or/and C) and transition metal (Re) elements. The electronic structures and formation energies of different doped systems are investigated using spin-polarized density functional theory. We find that (C, Re) doped TiO2, with a low formation energy and a large binding energy, reduces the band gap to a large extent, thus it could contribute to the significant enhancement of the photocatalytic activity in the visible-light region. It should be pointed out that, to be successful, the proper proportion of the dopants C and Re should be controlled, so that reasonable PEC properties can be achieved.
|
Received: 23 July 2013
Revised: 11 September 2013
Accepted manuscript online:
|
PACS:
|
73.50.Pz
|
(Photoconduction and photovoltaic effects)
|
|
61.72.Bb
|
(Theories and models of crystal defects)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
84.60.-h
|
(Direct energy conversion and storage)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074135). |
Corresponding Authors:
Duan Xiang-Mei
E-mail: duanxiangmei@nbu.edu.cn
|
About author: 73.50.Pz; 61.72.Bb; 71.20.Nr; 84.60.-h |
Cite this article:
Li Wei (李伟), Wei Shi-Hao (韦世豪), Duan Xiang-Mei (段香梅) A strategy of enhancing the photoactivity of TiO2 containing nonmetal and transition metal dopants 2014 Chin. Phys. B 23 027305
|
[1] |
Fujishima A and Honda K 1972 Nature 238 37
|
[2] |
Grätzel M 2001 Nature 414 338
|
[3] |
Hoffmann M R, Martin S T, Choi W and Bahnemann D W 1995 Chem. Rev. 95 69
|
[4] |
Chen X and Mao S 2007 Chem. Rev. 107 2891
|
[5] |
Yin W J, Tang H W, Wei S H, Al-Jassim M, Turner J and Yan Y F 2010 Phys. Rev. B 82 045106
|
[6] |
Gai Y Q, Li J B, Li S S, Xia J B and Wei S H 2009 Phys. Rev. Lett. 102 036402
|
[7] |
Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269
|
[8] |
Yang K S, Dai Y, Huang B B and Whangbo M H 2009 J. Phys. Chem. C 113 2624
|
[9] |
Khan S, Al-Shahry M and Ingler W B 2002 Science 297 2243
|
[10] |
Lu J B, Dai Y, Guo M, Yu L, Lai K R and Huang B B 2012 Appl. Phys. Lett. 100 102114
|
[11] |
Valentin C D, Pacchioni G and Selloni A 2004 Phys. Rev. B 70 085116
|
[12] |
Lindgren T, Mwabora J M, Avenda E, Jonsson J, Hoel E, Granqvist C G and Lindquist S E 2003 J. Phys. Chem. B 107 5709
|
[13] |
Irie H, Watanabe Y and Hashimoto K 2003 J. Phys. Chem. B 107 5483
|
[14] |
Lin Z, Orlov A, Lambert R M and Payne M C 2005 J. Phys. Chem. B 109 20948
|
[15] |
Choi W, Termin A and Hoffmann M R 1994 J. Phys. Chem. 98 13669
|
[16] |
Mu W, Herrmann J and Pichat P 1989 Catal. Lett. 3 73
|
[17] |
Peng H W, Li J B, Li S S and Xia J B 2008 J. Phys.: Condens. Matter 20 125207
|
[18] |
Kulik H, Cococcioni M, Scherlis D A and Marzari N 2006 Phys. Rev. Lett. 97 103001
|
[19] |
Long R and English N J 2011 Phys. Rev. B 83 155209
|
[20] |
Couselo N, Einschlag F S, Candal R J and Jobbagy M 2008 J. Phys. Chem. C 112 1094
|
[21] |
Gao B F, Ma Y, Cao Y A, Yang W S and Yao J N 2006 J. Phys. Chem. B 110 14391
|
[22] |
Long R and English N J 2009 Appl. Phys. Lett. 94 132102
|
[23] |
Zhu W G, Qiu X F, Lancu V, Chen X Q, Pan H, Wang W, Dimitrijevic N M, Rajh T, Meyer H M, Paranthaman M P, Stocks G M, Weitering H H, Gu B H, Eres G and Zhang Z Y 2009 Phys. Rev. Lett. 103 226401
|
[24] |
Celik V and Mete E 2012 Phys. Rev. B 86 205112
|
[25] |
Wang P, Liu Z R, Lin F, Zhou G, Wu J, Duan W H, Gu B L and Zhang S B 2010 Phys. Rev. B 82 193103
|
[26] |
Wang D, Zou Y H, Wen S C and Fan D Y 2009 Appl. Phys. Lett. 95 012106
|
[27] |
Baroni S, Gironcoli S, Corso A D and Giammozzi P http://www.pwscf.org
|
[28] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[29] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[30] |
Vanderbilt D 1990 Phys. Rev. B 41 7892
|
[31] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[32] |
Park C H and Chadi D J 1995 Phys. Rev. Lett. 75 1134
|
[33] |
Yin W J, Wei Su-huai, Al-Jassim M and Yan Y F 2011 Phys. Rev. Lett. 106 066801
|
[34] |
Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|