Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 026401    DOI: 10.1088/1674-1056/23/2/026401
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Phase transition of Bose–Einstein condensate under decoherence

Zheng Qiang (郑强)a, Yi Shan-Feng (易善峰)a, Hu Chang-Gang (胡长刚)b
a School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, China;
b School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China
Abstract  The effect of decoherence on the phase transition of a Bose–Einstein condensate in a symmetric double-well potential is determined by the mean atom number difference. It still has two phases, the tunneling phase and the self-trapping phase, even under decoherence. The density matrix and the operator fidelity also show very different behaviors in the two phases. This suggests that operator fidelity can be used to characterize the phase transition of this Bose–Einstein condensate model, even under decoherence.
Keywords:  Bose–Einstein condensate      phase transition      operator fidelity  
Received:  28 April 2013      Revised:  16 July 2013      Accepted manuscript online: 
PACS:  64.60.-i (General studies of phase transitions)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11065005) and the Creative Talent Programme in University of Guizhou Province, China.
Corresponding Authors:  Hu Chang-Gang     E-mail:  hudmtop01@sina.com
About author:  64.60.-i; 03.75.Mn; 03.75.Kk

Cite this article: 

Zheng Qiang (郑强), Yi Shan-Feng (易善峰), Hu Chang-Gang (胡长刚) Phase transition of Bose–Einstein condensate under decoherence 2014 Chin. Phys. B 23 026401

[1] Bloch I, Dalibard J and Zwerger W 1999 Rev. Mod. Phys. 80 885
[2] Büchler H P, Hermele M, Huber S D, Fisher M P A and Zoller P 2005 Phys. Rev. Lett. 95 040402
[3] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[4] Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546
[5] Greiner M, Mandel O, Esslinger T, Hansch T W and Bloch I 2002 Nature 415 39
[6] Zanardi P and Paunkovic N 2006 Phys. Rev. E 74 031123
[7] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Phys. Rev. Lett. 96 140604
[8] Chen S, Wang L, Gu S J and Wang Y P 2007 Phys. Rev. E 76 061108
[9] Yuan Z G, Zhang P and Li S S 2007 Phys. Rev. A 75 012102
[10] Zurek W H 2003 Rev. Mod. Phys. 75 715
[11] Diehl S, Tomadin A, Micheli A, Fazio R and Zoller P 2010 Phys. Rev. Lett. 105 015702
[12] Wang W, Fu L B and Yi X X 2007 Phys. Rev. A 75 045601
[13] Milburn G J 1991 Phys. Rev. A 44 5401
[14] Moya-Cessa H, Buzek V, Kim M S and Knight P L 1993 Rev. Phys. A 48 3900
[15] Zheng Q, Xie X, Zhi Q, Zhang X and Ren Z 2010 Phys. Scr. 82 045003
[16] Hu X M and Liu J M 2009 Chin. Phys. B 18 411
[17] Jiang C, Liu X, Liu M, Wang Y and Peng Z 2012 Acta Phys. Sin. 61 170302 (in Chinese)
[18] Ma Y, Fu L B, Yang Z A and Liu J 2006 Acta Phys. Sin. 55 5623 in Chinese)
[19] Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A and Wieman C E 2001 Nature 412 295
[20] Tonel A P, Links J and Foerster A 2005 J. Phys. A: Math. Gen. 38 1235
[21] Smerzi A, Fantoni S, Giovanazzi S and Shenoy S R 1997 Phys. Rev. Lett. 79 4950
[22] Albiez M, Gati R, Fölling J, Hunsmann S, Cristiani M and Oberthaler M K 2005 Phys. Rev. Lett. 95 010402
[23] Wu B and Liu J 2006 Phys. Rev. Lett. 96 020504
[24] Fu L B and Liu J 2006 Phys. Rev. A 74 063614
[25] Zheng Q, Wang W G, Qin P, Wang P, Zhang X P and Ren Z Z 2009 Phys. Rev. E 80 016214
[26] Wang X G, Yu C and Yi X X 2008 Phys. Lett. A 373 58
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[8] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[11] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[12] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!