Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020502    DOI: 10.1088/1674-1056/23/2/020502
GENERAL Prev   Next  

A modified equation of state for Xe at high pressures by molecular dynamics simulation

Xiao Hong-Xing (肖红星), Long Chong-Sheng (龙冲生)
Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041, China
Abstract  The exact equation of state (EOS) for the fission gas Xe is necessary for the accurate prediction of the fission gas behavior in uranium dioxide nuclear fuel. However, the comparison with the experimental data indicates that the applicable pressure ranges of existing EOS for Xe published in the literature cannot cover the overpressure of the rim fission gas bubble at the typical UO2 fuel pellet rim structure. Based on the interatomic potential of Xe, the pressure–volume–temperature data are calculated by the molecular dynamics (MD) simulation. The results indicate that the data of MD simulation with Ross and McMahan’s potential [M. Ross and A. K. McMahan 1980 Phys. Rev. B 21 1658] are in good agreement with the experimental data. A preferable EOS for Xe is proposed based on the MD simulation. The comparison with the MD simulation data shows that the proposed EOS can be applied at pressures up to 550 MPa and 3 GPa and temperatures 900 K and 1373 K respectively. The applicable pressure range of this EOS is wider than those of the other existing EOS for Xe published in the literature.
Keywords:  equation of state      fission gas      molecular dynamics simulation  
Received:  30 March 2013      Revised:  09 May 2013      Accepted manuscript online: 
PACS:  05.70.Ce (Thermodynamic functions and equations of state)  
  24.75.+i (General properties of fission)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11205146).
Corresponding Authors:  Xiao Hong-Xing     E-mail:  xiaohongxing2003@163.com
About author:  05.70.Ce; 24.75.+i; 02.70.Ns

Cite this article: 

Xiao Hong-Xing (肖红星), Long Chong-Sheng (龙冲生) A modified equation of state for Xe at high pressures by molecular dynamics simulation 2014 Chin. Phys. B 23 020502

[1] Antonino R, Matthias I H and Renato R 2007 J. Nucl. Mater. 361 62
[2] Boyarchenkov A S, Potashnikov S I, Nekrasov K A and Kupryazhkin A Y 2012 J. Nucl. Mater. 421 1
[3] Li J K and Tian X F 2010 Chin. Phys. Lett. 27 036501
[4] Koo Y H, Oh J Y, Lee B H and Sohn D S 2003 J. Nucl. Mater. 321 249
[5] Wiesenack W, Lee B H and Sohn D S 2005 Nucl. Eng. Technol. 37 317
[6] Khvostov G, Mikityuk K and Zimmermann M A 2011 Nucl. Eng. Des. 241 2983
[7] Vincenzo V R and Thierry W 2010 Materials Today 13 24
[8] Antonino R, Matthias I H and Renato R 2007 J. Nucl. Mater. 361 62
[9] Koo Y H, Lee B H, Cheon J S and Sohn D S 2001 J. Nucl. Mater. 295 213
[10] Spino J, Rest J, Goll W and Walker C T 2005 J. Nucl. Mater. 346 131
[11] Noirot J, Desgranges L and Lamontagne J 2008 J. Nucl. Mater. 372 318
[12] Tian X F, Long C S, Zhu Z H and Gao T 2010 Chin. Phys. B 19 057102
[13] Ronchi C 1981 J. Nucl. Mater. 96 314
[14] Zisman A N, Aleksandrov I V and Stishov S M 1985 Phys. Rev. B 32 484
[15] Oh J Y, Koo Y H, Cheon J S, Lee B H and Sohn D S 2008 J. Nucl. Mater. 372 89
[16] Barker J A and Henderson D 1968 J. Chem. Educ. 45 2
[17] Dai W, Tang Y J, Wang C Y and Sun W G 2009 Acta Phys. Sin. 58 7313 (in Chinese)
[18] Wood M H, Matthews J R and Matthews H R 1979 J. Nucl. Mater. 87 167
[19] Harrison J W 1969 J. Nucl. Mater. 31 99
[20] Carnahan N F and Starling K E 1969 J. Chem. Phys. 51 635
[21] Hirschfelder J O, Curtiss C F and Bird R B 1954 Molecular Theory of Gases and Liquids (New York: Wiley) p. 11
[22] Reiss H R, Frisch H L and Lebowitz J L 1959 J. Chem. Phys. 31 369
[23] Wertheim M S 1963 Phys. Rev. Lett. 10 501
[24] Kaplun A B and Meshalkin A B 2002 Dokl. Ross. Akad. Nauk. 376 624
[25] Kaplun A B and Meshalkin A B 2003 High Temp. 41 319
[26] Ross M and McMahan A K 1980 Phys. Rev. B 21 1658
[27] Geng H Y, Chen Y, Kaneta Y and Kinoshita M 2008 J. Alloys Compd. 457 465
[28] Tang K T and Toennies J P 2003 J. Chem. Phys. 118 4976
[29] Gale J D and Rohl A L 2003 Molecular Simulation 29 291
[30] Hoover 1985 Phys. Rev. A 31 1695
[31] Beattie J A, Barriault R J and Brierley J S 1951 J. Chem. Phys. 19 1219
[32] Juza J and Sifner O 1977 Acta Tech. Csav. 22 1
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[14] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[15] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
No Suggested Reading articles found!