Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020501    DOI: 10.1088/1674-1056/23/2/020501
GENERAL Prev   Next  

Studies of phase return map and symbolic dynamics in a periodically driven Hodgkin–Huxley neuron

Ding Jiong (丁炯)a, Zhang Hong (张宏)a, Tong Qin-Ye (童勤业)a, Chen Zhuo (陈琢)b
a Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China;
b Department of Automation, Zhejiang University City College, Hangzhou 310015, China
Abstract  How neuronal spike trains encode external information is a hot topic in neurodynamics studies. In this paper, we investigate the dynamical states of the Hodgkin–Huxley neuron under periodic forcing. Depending on the parameters of the stimulus, the neuron exhibits periodic, quasiperiodic and chaotic spike trains. In order to analyze these spike trains quantitatively, we use the phase return map to describe the dynamical behavior on a one-dimensional (1D) map. According to the monotonicity or discontinuous point of the 1D map, the spike trains are transformed into symbolic sequences by implementing a coarse-grained algorithm – symbolic dynamics. Based on the ordering rules of symbolic dynamics, the parameters of the external stimulus can be measured in high resolution with finite length symbolic sequences. A reasonable explanation for why the nervous system can discriminate or cognize the small change of the external signals in a short time is also presented.
Keywords:  Hodgkin–Huxley neuron      return map      symbolic dynamics      chaos  
Received:  17 April 2013      Revised:  14 May 2013      Accepted manuscript online: 
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Tp (Time series analysis)  
  87.19.L- (Neuroscience)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60871085) and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y1100119).
Corresponding Authors:  Zhang Hong     E-mail:  zhangh@mail.bme.zju.edu.cn
About author:  05.45.Pq; 05.45.Tp; 87.19.L-

Cite this article: 

Ding Jiong (丁炯), Zhang Hong (张宏), Tong Qin-Ye (童勤业), Chen Zhuo (陈琢) Studies of phase return map and symbolic dynamics in a periodically driven Hodgkin–Huxley neuron 2014 Chin. Phys. B 23 020501

[1] Jensen M H, Bak P and Bohr T 1984 Phys. Rev. A 30 1960
[2] Engelbrecht J R and Mirollo R 2009 Phys. Rev. E 79 021904
[3] Lee S G and Kim S 2006 Phys. Rev. E 73 041924
[4] Cameron L J and Herbert F J 2001 Methods 24 347
[5] Dehaene S, Cohen L, Sigman M and Vinckier F 2005 Trends in Cognitive Sciences 7 335
[6] Hodgkin A L and Huxley A F 1952 The Journal of Physiology 117 500
[7] Bohr T, Bak P and Jensen M H 1984 Phys. Rev. A 30 1970
[8] Alligood K T, Sauer T D and Yorke J A 1996 Chaos: An Introduction to Dynamical Systems (New York: Springer-Verlog) pp. 273–285
[9] Agnes E J, Erichsen R and Brunnet L G 2010 Physica A: Statistical Mechanics and Its Applications 389 651
[10] Pluchino A, Rapisarda A and Tsallis C 2013 Phys. Rev. E 87 022910
[11] He D R, Yeh W J and Kao Y H 1985 Phys. Rev. B 31 1359
[12] Siminos E and Cvitanovic P 2011 Physica D: Nonlinear Phenomena 240 187
[13] Zheng W M 1990 Phys. Rev. A 42 2076
[14] Hao B L 1989 Elementary Symbolic Dynamics and Chaos in Dissipative Systems (Singapore: World Scientific) pp. 101–111
[15] Zhang Z J and Chen S G 1989 Acta Phys. Sin. 38 1 (in Chinese)
[16] Sella L and Collins P 2010 J. Comput. Appl. Math. 234 418
[17] Azarnoosh M, Nasrabadi A M, Mohammadi M R and Firoozabadi M 2011 Chaos, Solitons & Fractals 44 1054
[18] Oswald A M, Doiron B and Maler L 2007 J. Neurophysiol. 97 2731
[19] Person A L and Raman I M 2012 Nature 481 502
[20] Gao Z Y and Lu Q S 2007 Chin. Phys. 16 2479
[21] Wang G R and Chen S G 1990 Acta Phys. Sin. 39 1705 (in Chinese)
[22] Zheng W M and Hao B L 1994 Advanced Series in Nonlinear Science Applied Symbolic Dynamics (Shanghai: Shanghai Scientific and Technological Education Publishing House) pp. 110–133 (in Chinese)
[23] Sun L S, Kang X Y and Lin L X 2010 Chin. Phys. B 19 110510
[24] Sun L S, Kang X Y, Zhang Q and Lin L X 2011 Chin. Phys. B 20 120507
[25] Gao W and Peng S L 2005 Chin. Phys. Lett. 22 1848
[26] Lampreia J P and Ramos J S 1997 Port. Math. 54 1
[27] Moneforte M and Wolf F 2010 Phys. Rev. Lett. 105 268104
[28] Yang Z J, Guo L and Zhu Q B 2012 Artificial Intelligence and Computational Intelligence Lecture Notes in Computer Science 7530 580
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[7] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[8] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!