Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020308    DOI: 10.1088/1674-1056/23/2/020308
GENERAL Prev   Next  

Condensate fraction of asymmetric three-component Fermi gas

Du Jia-Jia (杜佳佳)a, Liang Jun-Jun (梁军军)b, Liang Jiu-Qing (梁九卿)a
a Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China;
b Department of Physics, Shanxi University, Taiyuan 030006, China
Abstract  In this paper, we investigate the condensate fraction (CF) of fermionic pairs in the BCS–BEC crossover for three-component Fermi gas with both asymmetric interactions and unequal chemical potentials in two-dimensional free space. By using the functional-path-integral method, we have analytically derived the number densities and bound-state energy, from which the off-diagonal long-range order is analyzed in terms of the asymptotic behavior of the two-body density matrix. The explicit formula of CF is obtained as a function of the bound-state energy and population imbalance. It is demonstrated that the CF spectrum with respect to the bound-state energy can be used to characterize the quantum phase transition between the two kinds of Sarma phases as well as the transition from three-component to two-component superfluid. Moreover we obtain the same analytic formula of CF in the BCS superfluid phase as that of homogeneous Fermi gas with equal chemical potentials.
Keywords:  condensate fraction      BCS–BEC crossover      Sarma phases  
Received:  06 March 2013      Revised:  16 July 2013      Accepted manuscript online: 
PACS:  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  03.75.Ss (Degenerate Fermi gases)  
  05.30.Fk (Fermion systems and electron gas)  
  74.20.Fg (BCS theory and its development)  
Fund: Project supported by the Graduate Outstanding Innovation Item of Shanxi Province, China (Grant No. 20123005) and the National Natural Science Foundation of China (Grant Nos. 11075099 and 11275118).
Corresponding Authors:  Liang Jiu-Qing     E-mail:  jqliang@sxu.edu.cn
About author:  03.75.Hh; 03.75.Ss; 05.30.Fk; 74.20.Fg

Cite this article: 

Du Jia-Jia (杜佳佳), Liang Jun-Jun (梁军军), Liang Jiu-Qing (梁九卿) Condensate fraction of asymmetric three-component Fermi gas 2014 Chin. Phys. B 23 020308

[1] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Denschlag J H and Grimm R 2003 Science 302 2101
[2] Greiner M, Regal C A and Jin D S 2003 Nature 426 537
[3] Zwierlein M W, Abo-Shaeer J, Schirotzek A, Schunck C and Ketterle W 2004 Nature 435 1047
[4] Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Gupta S, Hadzibabic Z and Ketterle W 2003 Phys. Rev. Lett. 91 250401
[5] Zwierlein M W, Schirotzek A, Schunck C H and Ketterle W 2006 Science 311 492
[6] Kinast J, Hemmer S L, Gehm M E, Turlapov A and Thomas J E 2004 Phys. Rev. Lett. 92 150402
[7] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[8] Falco G M and Stoof H T C 2004 Phys. Rev. Lett. 92 130401
[9] Hu H, Minguzzi A, Liu X J and Tosi M P 2004 Phys. Rev. Lett. 93 190403
[10] Zhai H 2009 Phys. Rev. A (Rapid Communication) 80 051605
[11] Cui X L and Zhai H 2010 Phys. Rev. A (Rapid Communication) 81 041602
[12] Zhou Y, Ma X D and Huang G X 2006 Chin. Phys. Lett. 23 2662
[13] Zhang W Y and Wang C T 2010 Chin. Phys. Lett. 27 040304
[14] Huang B B and Wan S L 2009 Chin. Phys. Lett. 26 070304
[15] Wang Y S, Yan P G, Li B and Liu X S 2012 Chin. Phys. B 21 010309
[16] Ma Z Q and Yang C N 2009 Chin. Phys. Lett. 26 120505
[17] Hao Y J 2011 Chin. Phys. B 20 060307
[18] Chao G and Zhen H Y 2012 Phys. Rev. A 86 043609
[19] He L Y and Zhuang P F 2008 Phys. Rev. A 78 033613
[20] Conduit G J, Conlon P H and Simons B D 2008 Phys. Rev. A 77 053617
[21] Marini M, Pistolesi F and Strinati G C 1998 Eur. Phys. J. B 1 151
[22] Du J J, Chen C and Liang J J 2009 Phys. Rev. A 80 023601
[23] Parish M M 2011 Phys. Rev. A 83 051603
[24] Salasnich L 2007 Phys. Rev. A 76 015601
[25] Iskin M and Sa de Melo C A R 2006 Phys. Rev. Lett. 97 100404
[26] Iskin M and Sa de Melo C A R 2007 Phys. Rev. A 76 013601
[27] Liu W V and Wilczek F 2003 Phys. Rev. Lett. 90 047002
[28] Hu H and Liu X J 2006 Phys. Rev. A 73 051603
[29] Pao C H, Wu S T and Yip S K 2006 Phys. Rev. B 73 132506
[30] Su W C 2006 Phys. Rev. A 74 063627
[31] He L Y, Jin M and Zhuang P F 2006 Phys. Rev. A 74 033604
[32] Ozawa T and Baym G 2010 Phys. Rev. A 82 063615
[33] Cherng R W, Refael G and Demler E 2007 Phys. Rev. Lett. 99 130406
[34] Salasnich L 2011 Phys. Rev. A 83 033630
[35] Salasnich L e-print arXiv: 1108 0076
[36] Du J J, Liang J J and Liang J Q 2012 Phys. Rev. A 85 033610
[37] Salasnich L, Manini N and Parola A 2005 Phys. Rev. A 72 023621
[38] Ortiz G and Dukelsky J 2005 Phys. Rev. A 72 043611
[39] Astrakharchik G E, Boronat J, Casulleras J and Giorgini S 2005 Phys. Rev. Lett. 95 230405
[40] Regal C A, Greiner M and Jin D S 2004 Phys. Rev. Lett. 92 040403
[41] Sarma G 1963 J. Phys. Chem. Solids 24 1029
[42] Fulde P and Ferrell R A 1964 Phys. Rev. 135 A550
[43] Larkin A J and Ovchinnikov Y N 1964 Zh. Eksp. Teor. Fiz. 47 1136 [1963 Sov. Phys. JEPT 20 762]
[44] Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J and Ketterle W 2004 Phys. Rev. Lett. 92 120403
[45] Zwierlein M W, Schunck C H, Stan C A, Raupach S M F and Ketterle W 2005 Phys. Rev. Lett. 94 180401
[46] Vivas H e-print arXiv: 0504 600
[47] Yang C Y 1962 Rev. Mod. Phys. 34 694
[48] Campbell C E, Clark J W and Panat P V 1997 Condensed Matter Theories (New York: Nova Science) Vol. 12, p. 131
[1] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[2] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[3] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[4] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[5] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
[6] Superfluid phases and excitations in a cold gas of d-wave interacting bosonic atoms and molecules
Zehan Li(李泽汉), Jian-Song Pan, and W Vincent Liu. Chin. Phys. B, 2021, 30(6): 066703.
[7] Impurity-induced Shiba bound state in the BCS-BEC crossover regime of two-dimensional Fermi superfluid
Siqi Shao(邵思齐), Kezhao Zhou(周可召), Zhidong Zhang(张志东). Chin. Phys. B, 2019, 28(7): 070501.
[8] Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2019, 28(4): 047701.
[9] Trapped Bose-Einstein condensates with quadrupole-quadrupole interactions
An-Bang Wang(王安邦), Su Yi(易俗). Chin. Phys. B, 2018, 27(12): 120307.
[10] Momentum distribution and non-local high order correlation functions of 1D strongly interacting Bose gas
EJKP Nandani, Xi-Wen Guan(管习文). Chin. Phys. B, 2018, 27(7): 070306.
[11] Electronic and magnetic properties of semihydrogenated, fully hydrogenated monolayer and bilayer MoN2 sheets
Yan-Chao She(佘彦超), Zhao Wei(魏昭), Kai-Wu Luo(罗开武), Yong Li(李勇), Yun Zhang(张云), Wei-Xi Zhang(张蔚曦). Chin. Phys. B, 2018, 27(6): 060306.
[12] Tunable ground-state solitons in spin-orbit coupling Bose-Einstein condensates in the presence of optical lattices
Huafeng Zhang(张华峰), Fang Chen(陈方), Chunchao Yu(郁春潮), Lihui Sun(孙利辉), Dahai Xu(徐大海). Chin. Phys. B, 2017, 26(8): 080304.
[13] Matter wave interference of dilute Bose gases in the critical regime
Xuguang Yue(乐旭广), Shujuan Liu(刘淑娟), Biao Wu(吴飙), Hongwei Xiong(熊宏伟). Chin. Phys. B, 2017, 26(5): 050501.
[14] Effect of disorders on topological phases inone-dimensional optical superlattices
Zhizhou Wang(王志宙), Yidong Wu(吴一东), Huijing Du(杜会静), Xili Jing(井西利). Chin. Phys. B, 2016, 25(7): 077303.
[15] Effects of a finite number of particles on the thermodynamic properties of a harmonically trapped ideal charged Bose gas in a constant magnetic field
Duan-Liang Xiao(肖端亮), Meng-Yun Lai(赖梦云), Xiao-Yin Pan(潘孝胤). Chin. Phys. B, 2016, 25(1): 010307.
No Suggested Reading articles found!