Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020304    DOI: 10.1088/1674-1056/23/2/020304
GENERAL Prev   Next  

Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement

Liao Xiang-Ping (廖湘萍)a, Fang Mao-Fa (方卯发)b, Fang Jian-Shu (方见树)a, Zhu Qian-Quan (朱钱泉)a
a College of Science, Hunan University of Technology, Zhuzhou 412008, China;
b College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  We demonstrate a method to preserve entanglement and improve fidelity of three-qubit quantum states undergoing amplitude-damping decoherence using weak measurement and quantum measurement reversal. It is shown that we are able to enhance entanglement to the greatest extent, and to circumvent entanglement sudden death by increasing the weak measurement strength both for the GHZ state and the W state. The weak measurement technique can also enhance the fidelity to the quantum region and even close to 1 for the whole range of the decoherence parameter in both of the two cases. In addition, the W state can maintain more fidelity than the GHZ state in the protection protocol. However, the GHZ state has a higher success probability than the W state.
Keywords:  entanglement protection      quantum fidelity      weak measurement  
Received:  16 April 2013      Revised:  17 July 2013      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074072), the Natural Science Foundation of Hunan Province of China (Grant No. 10JJ3088), the Major Program for the Research Foundation of the Education Bureau of Hunan Province of China (Grant No. 10A026), and the Program for the Research Foundation of the Education Bureau of Hunan Province of China (Grant No. 10C0658).
Corresponding Authors:  Liao Xiang-Ping, Fang Jian-Shu     E-mail:  Liaoxp1@126.com;fjs289@163.com
About author:  03.65.Ud; 42.50.Dv; 03.67.Lx; 03.67.Hk

Cite this article: 

Liao Xiang-Ping (廖湘萍), Fang Mao-Fa (方卯发), Fang Jian-Shu (方见树), Zhu Qian-Quan (朱钱泉) Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement 2014 Chin. Phys. B 23 020304

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[3] Masanes L, Pironio S and Acin A 2011 Nat. Commun. 2 238
[4] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[5] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[6] Kim Y H, Kulik S P and Shih Y H 2001 Phys. Rev. Lett. 86 1370
[7] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[8] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[9] Wang X W, Zhang D Y, Tang S Q, Zhan X G and You K M 2010 Int. J. Theor. Phys. 49 2691
[10] Wang X W, Zhang D Y, Tang S Q and Xie L J 2011 J. Phys. B: At. Mol. Opt. Phys. 44 035505
[11] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
[12] Cui J, Gu M, Kwek L C, Santos M F, Fan H and Vedral V 2012 Nat. Commun. 3 812
[13] Mazzola L, Bellomo B, Franco R L and Compagno G 2010 Phys. Rev. A 81 052116
[14] Bellomo B, Compagno G, D’Arrigo A, Falci G, Franco R L and Paladino E 2010 Phys. Rev. A 81 062309
[15] Bellomo B, Compagno G, Franco R L, Ridolfo A and Savasta S 2011 Phys. Scr. T 143 014004
[16] Franco R L, Bellomo B, Andersson E and Compagno G 2012 Phys. Rev. A 85 032318
[17] Liao X P, Fang J S and Fang M F 2010 Chin. Phys. B 19 094203
[18] Pan C N, Li F, Fang J S and Fang M F 2011 Chin. Phys. B 20 020304
[19] Lu D M 2011 Acta Phys. Sin. 60 120303 (in Chinese)
[20] Xu J Z, Guo J B, Wen W, Bai Y K and Yan F L 2012 Chin. Phys. B 21 080305
[21] Wang S J and Lu P 2009 Acta Phys. Sin. 58 5955 (in Chinese)
[22] Shor P W 1995 Phys. Rev. A 52 2493
[23] Steane A M 1996 Phys. Rev. Lett. 77 793
[24] Calderbank A R and Shor P W 1996 Phys. Rev. A 54 1098
[25] Steane A M 1996 Proc. R. Soc. Lond. A 452 2551
[26] Bellomo B, Franco R L, Maniscalco S and Compagno G 2008 Phys. Rev. A 78 060302
[27] Bellomo B, Franco R L, Maniscalco S and Compagno G 2010 Phys. Scr. T 140 014014
[28] Franco R L, Bellomo B, Maniscalco S and Compagno G 2013 Int. J. Mod. Phys. B 27 1345053
[29] D’Arrigo A, Franco R L, Benenti G, Paladino E and Falci G 2012 arXiv: 1207.3294v1 [quant-ph]
[30] Lu D M 2010 Acta Phys. Sin. 59 8359 (in Chinese)
[31] Shan C J, Liu J B, Chen T, Liu T K, Huang Y X and Li H 2010 Acta Phys. Sin. 59 6799 (in Chinese)
[32] Liu J M, Guo G C and Li J 2002 Chin. Phys. 11 339
[33] Koashi M and Ueda M 1999 Phys. Rev. Lett. 82 2598
[34] Korotkov A N and Jordan A N 2006 Phys. Rev. Lett. 97 166805
[35] Kim Y S, Cho Y W, Ra Y S and Kim Y H 2009 Opt. Express 17 11978
[36] Lee J C, Jeong Y C, Kim Y S and Kim Y H 2011 Opt. Express 19 16309
[37] Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
[38] Man Z X, Xia Y J and An N B 2012 Phys. Rev. A 86 052322
[39] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[40] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[41] Agrawal P and Pati A 2006 Phys. Rev. A 74 062320
[42] Carmichael H 1993 An Open Systems Approach to Quantum Optics (Berlin: Springer)
[43] Kraus K 1983 States, Effects and Operations (Berlin: Springer-Verlag)
[44] Sabín C and García-Alcaine G 2008 Eur. Phys. J. D 48 435
[45] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[46] Ou Y C and Fan H 2007 Phys. Rev. A 75 062308
[47] Jung E, Hwang M R, Ju Y H, Kim M S, Yoo S K, Kim H, Park D K, Son J W, Tamaryan S and Cha S K 2008 Phys. Rev. A 78 012312
[48] Hu M L 2012 arXiv: 1202.4546v2 [quant-ph]
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[3] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[4] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[5] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[6] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[7] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[8] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[9] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[10] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[11] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
[12] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[13] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
[14] Weak value amplification via second-order correlated technique
Ting Cui(崔挺), Jing-Zheng Huang(黄靖正), Xiang Liu(刘翔), Gui-Hua Zeng(曾贵华). Chin. Phys. B, 2016, 25(2): 020301.
[15] Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2016, 25(11): 110303.
No Suggested Reading articles found!