|
|
Globally accurate ab initio based potential energy surface of H2O+(X4A") |
Song Yu-Zhi (宋玉志), Zhang Yuan (张媛), Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田) |
College of Physics and Electronics, Shandong Normal University, Jinan 250014, China |
|
|
Abstract A globally accurate potential energy surface is reported for the electronic ground-state H2O+. The ab initio energies utilized to map the potential energy surface are calculated at the multireference configuration interaction method employing the aug-cc-pVQZ basis set and the full valence complete active space wave function as reference. In order to improve accuracy of the resulting raw ab initio energies, they are then extrapolated to the complete basis set limit and most importantly to the full configuration-interaction limit by semiempirically correcting the dynamical correlation using the double many-body expansion-scaled external correlation method. The topographical features of the current potential energy surface were examined in detail, which agree nicely with those of other theoretical work.
|
Received: 04 January 2015
Revised: 28 January 2015
Accepted manuscript online:
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
31.15.ae
|
(Electronic structure and bonding characteristics)
|
|
31.50.Bc
|
(Potential energy surfaces for ground electronic states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304185 and 11074151), China Postdoctoral Science Foundation (Grant No. 2014M561957), the Postdoctoral Innovation Project of Shandong Province, China (Grant No. 201402013), and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM022). |
Corresponding Authors:
Song Yu-Zhi
E-mail: yzsong@sdnu.edu.cn
|
About author: 31.15.A-; 31.15.ae; 31.50.Bc |
Cite this article:
Song Yu-Zhi (宋玉志), Zhang Yuan (张媛), Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田) Globally accurate ab initio based potential energy surface of H2O+(X4A") 2015 Chin. Phys. B 24 063101
|
[1] |
Duley W W and Williams D A 1984 Interstellar Chemistry (New York: Academic Press)
|
[2] |
Ng C Y 2002 J. Phys. Chem. A 106 5953
|
[3] |
González M, Gilibert M, Aguilar A and Sayós R 1993 J. Chem. Phys. 98 2927
|
[4] |
Martínez R, Millán J and González M 2004 J. Chem. Phys. 120 4705
|
[5] |
Paniagua M, Martínez R, Gamallo P and González M 2014 Phys. Chem. Chem. Phys. 16 23594
|
[6] |
Fehsenfeld F C, Schmeltekopf A L and Ferguson E E 1967 J. Chem. Phys. 46 2802
|
[7] |
Smith D, Adams N G and Miller T M 1978 J. Chem. Phys. 69 308
|
[8] |
Viggiano A A, Van Doren J M, Morris R A, Williamson J S, Mundis P L, Paulson J F and Dateo C E 1991 J. Chem. Phys. 95 8120
|
[9] |
Li X, Huang Y L, Flesch G D and Ng C Y 1997 J. Chem. Phys. 106 564
|
[10] |
Sunderlin L and Armentrout P 1990 Chem. Phys. Lett. 167 188
|
[11] |
Gillen K T, Mahan B H and Winn J S 1973 J. Chem. Phys. 58 5373
|
[12] |
Gillen K T, Mahan B H and Winn J S 1973 J. Chem. Phys. 59 6380
|
[13] |
González M, Aguilar A and Gilibert M 1989 Chem. Phys. 131 335
|
[14] |
González M, Aguilar A and Gilibert M 1989 Chem. Phys. 131 347
|
[15] |
Whitton W, Mahling S and Kuntz P 1992 Chem. Phys. 162 379
|
[16] |
Martínez R, Sierra J D and González M 2005 J. Chem. Phys. 123 174312
|
[17] |
Martínez R, Sierra J D, Gray S K and González M 2006 J. Chem. Phys. 125 164305
|
[18] |
Martínez R, Lucas J M, Giménez X, Aguilar A and González M 2006 J. Chem. Phys. 124 144301
|
[19] |
Kłos J, Bulut N and Akpinar S 2012 Chem. Phys. Lett. 532 22
|
[20] |
Xu W, Li W, Lv S, Zhai H, Duan Z and Zhang P 2012 J. Phys. Chem. A 116 10882
|
[21] |
Xu W, Li W and Zhang P 2013 Comput. Theor. Chem. 1012 1
|
[22] |
Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
|
[23] |
Kendall R A, Dunning T H Jr and Harrison R J 1992 J. Chem. Phys. 96 6796
|
[24] |
Dunning T H Jr 1989 J. Chem. Phys. 90 1007
|
[25] |
Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
|
[26] |
Varandas A J C 1989 J. Chem. Phys. 90 4379
|
[27] |
Zhang L L, Gao S B, Meng Q T and Song Y Z 2015 Chin. Phys. B 24 013101
|
[28] |
Varandas A J C and Rodrigues S P J 2006 J. Phys. Chem. A 110 485
|
[29] |
Song Y Z, Caridade P J S B and Varandas A J C 2009 J. Phys. Chem. A 113 9213
|
[30] |
Song Y Z and Varandas A J C 2011 J. Phys. Chem. A 115 5274
|
[31] |
Molpro version 2012.1 a package of ab initio programs, Werner H J, Knowles P J, Knizia G, Manby F R, Schütz M and others 2012 see http://www.molpro.net
|
[32] |
Varandas A J C and Poveda L A 2006 Theor. Chem. Acc. 116 404
|
[33] |
Li Y Q, Song Y Z, Song P, Li Y Z, Ding Y, Sun M T and Ma F C 2012 J. Chem. Phys. 136 194705
|
[34] |
Song Y Z, Li Y Q, Gao S B and Meng Q T 2014 Eur. Phys. J. D 68 1
|
[35] |
Murrell J N and Carter S 1984 J. Phys. Chem. 88 4887
|
[36] |
Aguado A and Paniagua M 1992 J. Chem. Phys. 96 1265
|
[37] |
Aguado A, Tablero C and Paniagua M 1998 Comput. Phys. Comm. 108 259
|
[38] |
Liao J W and Yang C L 2014 Chin. Phys. B 23 073401
|
[39] |
Liang J J, Yang C L, Wang L Z and Zhang Q G 2012 J. Chem. Phys. 136 094307
|
[40] |
Yang C L, Wang L Z, Wang M S and Ma X G 2013 J. Phys. Chem. A 117 3
|
[41] |
Riahi R, Teulet P, Cressault Y, Gleizes A and Ben Lakhdar Z 2008 Eur. Phys. J. D 49 185
|
[42] |
Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold)
|
[43] |
Varandas A J C 1996 J. Chem. Phys. 105 3524
|
[44] |
Yang C L, Huang Y J, Zhang X and Han K L 2003 J. Mol. Struct.: THEOCHEM 625 289
|
[45] |
Huber K P G H 2001 NIST Chemistry WebBook 69http://webbook.nist.gov/chemistry
|
[46] |
Hirst D M and Guest M F 1983 Mol. Phys. 49 1461
|
[47] |
Balakrishnan A, Smith V and Stoicheff B P 1992 Phys. Rev. Lett. 68 2149
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|