Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 118201    DOI: 10.1088/1674-1056/23/11/118201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Transport of ions through a (6,6) carbon nanotube under electric fields

Shen Li (沈力), Xu Zhen (徐震), Zhou Zhe-Wei (周哲玮), Hu Guo-Hui (胡国辉)
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
Abstract  The transport of water and ions through carbon nanotubes (CNTs) is crucial in nanotechnology and biotechnology. Previous investigation indicated that the ions can hardly pass through (6,6) CNTs due to their hydrated shells. In the present study, utilizing molecular dynamics simulation, it is shown that the energy barrier mainly originating from the hydrated water molecules could be overcome by applying an electric field large enough in the CNT axis direction. Potential of mean force is calculated to show the reduction of energy barrier when the electric field is present for (Na+, K+, Cl-) ions. Consequently, ionic flux through (6,6) CNTs can be found once the electric field becomes larger than a threshold value. The variation of the coordination numbers of ions at different locations from the bulk to the center of the CNT is also explored to elaborate this dynamic process. The thresholds of the electric field are different for Na+, K+, and Cl- due to their characteristics. This consequence might be potentially applied in ion selectivity in the future.
Keywords:  nanostructured materials in electrochemistry      carbon nanotube      molecular dynamics      ion exchange  
Received:  19 March 2014      Revised:  15 May 2014      Accepted manuscript online: 
PACS:  82.45.Yz (Nanostructured materials in electrochemistry)  
  88.30.rh (Carbon nanotubes)  
  83.10.Mj (Molecular dynamics, Brownian dynamics)  
  82.39.Wj (Ion exchange, dialysis, osmosis, electro-osmosis, membrane processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272197 and 11372175) and the Innovation Program of Shanghai Municipality Education Commission, China (Grant No. 14ZZ095).
Corresponding Authors:  Hu Guo-Hui     E-mail:  ghhu@staff.shu.edu.cn

Cite this article: 

Shen Li (沈力), Xu Zhen (徐震), Zhou Zhe-Wei (周哲玮), Hu Guo-Hui (胡国辉) Transport of ions through a (6,6) carbon nanotube under electric fields 2014 Chin. Phys. B 23 118201

[1] Besteman K, Lee J O, Wiertz F G M, Heering H A and Dekker C 2003 Nano Lett. 3 727
[2] Ouyang F P, Peng S L, Zhang H, Weng L B and Xu H 2011 Chin. Phys. B 20 058504
[3] Chen X, Tam U C, Czlapinski J L, Lee G S, Rabuka D, Zettl A and Bertozzi C R 2006 J. Am. Chem. Soc. 128 6292
[4] Kam N W S, O'Connell M, Wisdom J A and Dai H 2005 Proc. Natl. Acad. Sci. USA 102 11600
[5] Kalra A, Garde S and Hummer G 2003 Proc. Natl. Acad. Sci. 100 10175
[6] Hummer G, Rasaiah J C and Noworyta J P 2001 Nature 414 188
[7] Gong X J and Fang H P 2008 Chin. Phys. B 17 2739
[8] Park K H, Chhowalla M, Iqbal Z and Federico S 2003 J. Biol. Chem. 278 50212
[9] Li Y, Zheng L P, Zhang W, Xu Z J, Ren C L, Huai P and Zhu Z Y 2011 Chin. Phys. Lett. 28 066101
[10] Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
[11] Wang J, Zhu Y, Zhou J and Lu X H 2004 PCCP 6 829
[12] Striolo A 2006 Nano Lett. 6 633
[13] Dinadayalane T, Murray J S, Concha M C, Politzer P and Leszczynski J 2010 J. Chem. Theory Comput. 6 1351
[14] Beu T A 2010 J. Chem. Phys. 132 164513
[15] Beu T A 2011 J. Chem. Phys. 135 044515
[16] Beu T A 2011 J. Chem. Phys. 135 044516
[17] Corry B 2008 J. Phys. Chem. B 112 1427
[18] Liu H, Murad S and Jameson C J 2006 J. Chem. Phys. 125 084713
[19] Song C and Corry B 2009 J. Phys. Chem. B 113 7642
[20] Liu H, Jameson C J and Murad S 2008 Mol. Simulat. 34 169
[21] Gong X, J. Xu L K, Wang J and Yang H 2010 J. Am. Chem. Soc. 132 1873
[22] Zhang Y and Voth G A 2011 J. Chem. Theory Comput. 7 2277
[23] Dietzel D, Faucher M, Iaia A, Aime J, Marsaudon S, Bonnot A, Bouchiat V and Couturier G 2005 Nanotechnology 16 S73
[24] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[25] MacKerell A D, Bashford D, Bellott M, Dunbrack R, Evanseck J, Field M J, Fischer S, Gao J, Guo H and Ha S A 1998 J. Phys. Chem. B 102 3586
[26] Gong X, Li J, Zhang H, Wan R, Lu H, Wang S and Fang H 2008 Phys. Rev. Lett. 101 257801
[27] Xiu P, Zhou B, Qi W, Lu H, Tu Y and Fang H 2009 J. Am. Chem. Soc. 131 2840
[28] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[29] Saitta A M, Saija F and Giaquinta P V 2012 Phys. Rev. Lett. 108 207801
[30] Rothfuss C J, Medvedev V K and Stuve E M 2003 J. Electroanal. Chem. 554 133
[31] Stuve E M 2012 Chem. Phys. Lett. 519 1
[32] Geissler P L, Dellago C, Chandler D, Hutter J and Parrinello M 2001 Science 291 2121
[33] Yang K L, Yiacoumi S and Tsouris C 2002 J. Chem. Phys. 117 337
[34] Park S, Khalili-Araghi F, Tajkhorshid E and Schulten K 2003 J. Chem. Phys. 119 3559
[35] Liu Z, Xu Y and Tang P 2006 J. Phys. Chem. B 110 12789
[36] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[37] Shao Q, Zhou J, Lu L, Lu X, Zhu Y and Jiang S 2009 Nano Lett. 9 989
[38] Bratko D, Daub C D, Leung K and Luzar A 2007 J. Am. Chem. Soc. 129 2504
[39] Hu G H, Xu A J, Xu Z and Zhou Z W 2008 Phys. Fluids 20 102101
[40] Xu Z, Hu G H, Wang Z L and Zhou Z W 2014 Appl. Math. Mech. 35 141 Xu Z, Hu G H, Wang Z L and Zhou Z W 2014 Appl. Math. Mech. 35 5
[42] Burgess J 1978 Metal Ions in Solution (Ellis Horwood) p. 181
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[9] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[10] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[11] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[12] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[13] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[14] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[15] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
No Suggested Reading articles found!