Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 114204    DOI: 10.1088/1674-1056/23/11/114204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Fiber optical parametric oscillator based on photonic crystal fiber pumped with all-normal-dispersion mode-locked Yb:fiber laser

Gou Dou-Dou (苟斗斗)a, Yang Si-Gang (杨四刚)a, Zhang Lei (张磊)a, Wang Xiao-Jian (王小建)a, Chen Hong-Wei (陈宏伟)a, Chen Ming-Hua (陈明华)a, Xie Shi-Zhong (谢世钟)a, Chen Wei (陈伟)b, Luo Wen-Yong (罗文勇)b
a Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
b FiberHome Telecommunication Technologies CO. Ltd, Wuhan 430074, China
Abstract  

We demonstrate a cost effective, linearly tunable fiber optical parametric oscillator based on a home-made photonic crystal fiber pumped with a mode-locked ytterbium-doped fiber laser, providing linely tuning ranges from 1018 nm to 1038 nm for the idler wavelength and from 1097 nm to 1117 nm for the signal wavelength by tuning the pump wavelength and the cavity length. In order to obtain the desired fiber with a zero dispersion wavelength around 1060 nm, eight samples of photonic crystal fibers with gradually changed structural parameters are fabricated for the reason that it is difficult to accurately customize the structural dimensions during fabrication. We verify the usability of the fabricated fiber experimentally via optical parametric generation and conclude a successful procedure of design, fabirication, and verification. A seed source of home-made all-normal-dispersion mode-locked ytterbium-doped fiber laser with 38.57 ps pulsewidth around the 1064 nm wavelength is used to pump the fiber optical parametric oscillator. The wide picosecond pulse pump laser enables a larger walk-off tolerance between the pump light and the oscillating light as well as a longer photonic crystal fiber of 20 m superior to the femtosecond pulse lasers, resulting in a larger parametric amplification and a lower threshold pump power of 15.8 dBm of the fiber optical parametric oscillator.

Keywords:  fiber optical parametric oscillator      photonic crystal fiber      mode-locked fiber laser  
Received:  01 April 2014      Revised:  24 April 2014      Accepted manuscript online: 
PACS:  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.70.Qs (Photonic bandgap materials)  
  42.55.Wd (Fiber lasers)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2010CB327606), the National Nature Science Foundation of China (Grant No. 61108007), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics, China.

Corresponding Authors:  Yang Si-Gang     E-mail:  ysg@tsinghua.edu.cn

Cite this article: 

Gou Dou-Dou (苟斗斗), Yang Si-Gang (杨四刚), Zhang Lei (张磊), Wang Xiao-Jian (王小建), Chen Hong-Wei (陈宏伟), Chen Ming-Hua (陈明华), Xie Shi-Zhong (谢世钟), Chen Wei (陈伟), Luo Wen-Yong (罗文勇) Fiber optical parametric oscillator based on photonic crystal fiber pumped with all-normal-dispersion mode-locked Yb:fiber laser 2014 Chin. Phys. B 23 114204

[1] Malcolm H D and Majid E 1999 Science 286 1513
[2] Lei G K P, Lim L T and Marhic M E 2013 Opt. Commun. 306 17
[3] Baumgartl M, Chemnitz M, Jauregui C, Meyer T, Dietzek B, Popp J, Limpert J and Tünnermann A 2012 Opt. Express 20 4484
[4] Kumar S C, Esteban-Martin A and Ebrahim-Zadeh M 2011 Opt. Lett. 36 1068
[5] Ferrando A, Silvestre E and Andrés P 2001 Opt. Express 9 687
[6] Wei W, Lan-Tian H, Jun-Jie S and Gui-Yao Z 2009 Chin. Phys. Lett. 26 054204
[7] Harvey J D, Leonhardt R Coen S and Wong G K L 2003 Opt. Lett. 28 2225
[8] Nodop D, Jauregui C, Schimpf D, Limpert J and Tünnermann A 2009 Opt. Lett. 34 3499
[9] Lavoute L, Knight J C, Dupriez P and Wadsworth W J 2010 Opt. Express 18 16193
[10] Herzog A, Shamir A and Ishaaya A A 2012 Opt. Lett. 37 82
[11] Gou D, Yang S, Zhang L, Wang X, Chen H, Chen M, Xie S, Chen W and Luo W 2013 Asia Communications and Photonics Conference (ACP), November 12-15, 2013, Beijing, China, p. AF1P.2.6
[12] Zhang L, Yang S, Wang X, Gou D, Li X, Chen H, Chen M and Xie S 2013 Opt. Lett. 38 4534
[13] Gou D, Yang S, Yin F, Zhang L, Xing F, Wang X, Chen H, Chen M and Xie S 2013 18th OptoElectronics and Communications Conference (OECC), June 30-July 4, 2013, p. TuPL-16
[14] Yang S, Zhang Y, Peng X, Lu Y and Xie S 2006 Opt. Express 14 3015
[15] Wong G K L, Murdoch S G, Leonhardt R, Harvey J D and Marie V 2007 Opt. Express 15 2947
[1] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[2] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[3] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[4] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[5] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[6] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[7] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[8] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[9] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
[10] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[11] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[12] Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction
Meng Wu(吴萌), Xin-Yu Liu(刘欣宇), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Bo-Yao Li(李波瑶), Zhi-Yun Hou(侯峙云). Chin. Phys. B, 2019, 28(12): 124202.
[13] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[14] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[15] Study on polarization properties of graphene coated D-shaped fiber
Xuejing Liu(刘学静), Luwen Yang(杨禄文), Jingyun Ma(马敬云), Caili Li(李彩丽), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2018, 27(10): 104206.
No Suggested Reading articles found!