ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Carrier-envelope phase effects on high-harmonic generation driven by mid-infrared laser field |
Diao Han-Hu (刁寒虎), Zheng Ying-Hui (郑颖辉), Zhong Yue (钟悦), Zeng Zhi-Nan (曾志男), Ge Xiao-Chun (葛晓春), Li Chuang (李闯), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展) |
Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China |
|
|
Abstract The influence of the carrier-envelope phase on high-harmonic generation is investigated, both experimentally and theoretically, for three different interaction gas media, driven by mid-infrared, few-cycle and CEP-stabilized laser pulses. Different patterns of harmonic spectra with varying CEP for the three interaction gas media are observed. Furthermore, in comparing our experiment results to the previous works driven by near-infrared laser pulses, different phenomena are found. Through numerical simulation, we find that for the two different kinds of driving fields, i.e. mid-infrared and near-infrared laser pulses, different kinds of electron trajectories contribute to the generation of high harmonics.
|
Received: 05 April 2014
Revised: 29 April 2014
Accepted manuscript online:
|
PACS:
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11127901, 61221064, 11134010, 11227902, 11222439, and 11274325), the National Basic Research Program of China (Grant No. 2011CB808103), and the Funds from Shanghai Commission of Science and Technology (Grant No. 12QA1403700). |
Corresponding Authors:
Zheng Ying-Hui,Zeng Zhi-Nan
E-mail: yhzheng@mail.siom.ac.cn;zhinan_zeng@mail.siom.ac.cn
|
About author: 42.65.Ky; 32.80.Rm |
Cite this article:
Diao Han-Hu (刁寒虎), Zheng Ying-Hui (郑颖辉), Zhong Yue (钟悦), Zeng Zhi-Nan (曾志男), Ge Xiao-Chun (葛晓春), Li Chuang (李闯), Li Ru-Xin (李儒新), Xu Zhi-Zhan (徐至展) Carrier-envelope phase effects on high-harmonic generation driven by mid-infrared laser field 2014 Chin. Phys. B 23 104210
|
|
| [1] | Ditmire T, Gumbrell E T, Smith R A, Tisch J W G, Meyerhofer D D and Hutchinson M H R 1996 Phys. Rev. Lett. 77 4756
|
|
| [2] | Bellini M, Lyngå C, Tozzi A, Gaarde M B, Hänsch T W, L'Huillier A and Wahlström C G 1998 Phys. Rev. Lett. 81 297
|
|
| [3] | Chini M, Zhao K and Chang Z 2014 Nat. Photon. 8 178
|
|
| [4] | Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
|
| [5] | Cheng T W, Li X P, Ao S Y and Fu P M 2003 Chin. Phys. Lett. 20 1511
|
|
| [6] | Wang Y S and Xu Z Z 2000 Chin. Phys. Lett. 17 491
|
|
| [7] | Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw-Hill Book Company)
|
|
| [8] | Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
|
|
| [9] | Lewenstein M, Sali'eres P and L'Huillier A 1995 Phys. Rev. A 52 4747
|
|
| [10] | Lewenstein M, Kulander K C, Schafer K J and Bucksbaum P H 1995 Phys. Rev. A 51 1495
|
|
| [11] | Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
|
|
| [12] | Yakovlev V S and Scrinzi A 2003 Phys. Rev. Lett. 91 153901
|
|
| [13] | Zhang J, Zhang J T, Sun Z R and Xu Z Z 2004 Chin. Phys. Lett. 21 468
|
|
| [14] | Wang B B, Chen J, Liu J, Li X P and Fu P M 2005 Chin. Phys. Lett. 22 2237
|
|
| [15] | Baltuska A, Udem T, Uiberacker M, Hentschel M, Goulielmakis E, Gohle C, Holzwarth R, Yakovlev V S, Scrinzi A, Hänsch T W and Krausz F 2003 Nature 421 611
|
|
| [16] | Chipperfield L E, Gaier L N, Knight P L, Marangos J P and Tisch J W G 2005 J. Mod. Opt. 52 243
|
|
| [17] | Haworth C A, Chipperfield L E, Robinson J S, Knight P L, Marangos J P and Tisch J W G 2007 Nat. Phys. 3 52
|
|
| [18] | Sansone G, Benedetti E, Caumes J P, Stagira S, Vozzi C, Nisoli M, Poletto L, Villoresi P, Strelkov V, Sola I, Elouga L B, Zaïr A, Mével E and Constant E 2009 Phys. Rev. A 80 063837
|
|
| [19] | Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
|
|
| [20] | Sheehy B, Martin J D D, DiMauro L F, Agostini P, Schafer K J, Gaarde M B and Kulander K C 1999 Phys. Rev. Lett. 83 5270
|
|
| [21] | Liu C, Takashi N, Tetsuo S and Hideaki O 2008 Phys. Rev. A 77 043411
|
|
| [22] | Torres R, Siegel T, Brugnera L, Procino I, Underwood J G, Altucci C, Velotta R, Springate E, Froud C, Turcu I C E, Patchkovskii S, Ivanov M Y, Smirnova O and Marangos J P 2010 Phys. Rev. A 81 051802
|
|
| [23] | Calegari F, Lucchini M, Kim K S, Ferrari F, Vozzi C, Stagira S, Sansone G and Nisoli M 2011 Phys. Rev. A 84 041802
|
|
| [24] | Geissler M, Tempea G, Scrinzi A, Schnürer M, Krausz F and Brabec T 1999 Phys. Rev. Lett. 83 2930
|
|
| [25] | Tong X M and Chu S I 2000 Phys. Rev. A 61 021802
|
|
| [26] | Kamta G L, Bandrauk A D and Corkum P B 2005 J. Phys. B: At. Mol. Opt. Phys. 38 L339
|
|
| [27] | Cheng J, Le A T, Trallero-Herrero C A and Lin C D 2011 Phys. Rev. A 84 043411
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|