Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 100502    DOI: 10.1088/1674-1056/23/10/100502
GENERAL Prev   Next  

Periodic solitons in dispersion decreasingfibers with a cosine profile

Jia Ren-Xu (贾仁需)a, Yan Hong-Li (闫宏丽)a, Liu Wen-Jun (刘文军)b, Lei Ming (雷鸣)b
a School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China;
b School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Periodic solitons are studied in dispersion decreasing fibers with a cosine profile. The variable-coefficient nonlinear Schrödinger equation, which can be used to describe the propagation of solitons, is investigated analytically. Analytic soliton solutions for this equation are derived with the Hirota's bilinear method. Using the soliton solutions, we obtain periodic solitons, and analyze the soliton characteristics. Influences of physical parameters on periodic solitons are discussed. The presented results can be used in optical communication systems and fiber lasers.
Keywords:  solitons      dispersion decreasing fibers      analytic soliton solutions      Hirota’s bilinear method  
Received:  14 February 2014      Revised:  08 April 2014      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205064, 51272202, and 61234006) and the Visiting Scholar Funds of the Key Laboratory of Optoelectronic Technology and Systems of Chongqing University (Grant No. 0902011812401_5).
Corresponding Authors:  Jia Ren-Xu,Liu Wen-Jun     E-mail:  rxjia@mail.xidian.edu.cn;jungliu@bupt.edu.cn
About author:  05.45.Yv; 42.65.Tg

Cite this article: 

Jia Ren-Xu (贾仁需), Yan Hong-Li (闫宏丽), Liu Wen-Jun (刘文军), Lei Ming (雷鸣) Periodic solitons in dispersion decreasingfibers with a cosine profile 2014 Chin. Phys. B 23 100502

[1]Agrawal G P 2007 Nonlinear Fiber Optics, 4th edn. (San Diego: Academic Press)
[2]Mostofi A, HatamiHanza H and Chu P L 1997 IEEE J. Quantum Electron. 33 620
[3]Pelusi M D and Liu H F 1997 IEEE J. Quantum Electron. 33 1430
[4]Qian L, Kutz J N and Wai P K A 2013 Opt. Commun. 301-302 29
[5]Cao W H, Xu P and Liu S H 2011 Acta Opt. Sin. 31 0419001
[6]Liang M T and Cao W H 2009 Opt. Commun. Technol. 33 52
[7]Travers J C, Stone J M, Rulkov A B, Cumberland B A, George A K, Popov S V, Knight J C and Taylor J R 2007 Opt. Express 15 13203
[8]Tse M L V, Horak P, Price J H V, Poletti F, He F and Richardson D J 2006 Opt. Lett. 31 3504
[9]Ozeki Y and Inoue T 2006 Opt. Lett. 31 1606
[10]Tang B, Li D J, Hu K and Tang Y 2013 Int. J. Mod. Phys. B 27 1350139
[11]Tang B, Li D J and Tang Y 2013 Can. J. Phys. 91 788
[12]Dai C Q and Zhu H P 2013 J. Opt. Soc. Am. B 30 3291
[13]Xu W C, Guo Q and Liu S H 1997 Chin. Phys. Lett.14 298
[14]Xu W C, Zhang S M, Luo A P, Chen W C, Liao C J, Liu S H, Wu J, Lou C Y and Gao Y Z 2001 Chin. Phys. Lett. 18 1360
[15]Zhang Y L and Zhang A L 2011 Acta Phys. Sin. 60 114211 (in Chinese)
[16]Liu J H, Ding Y K, Li T, Hu Z Y and Li S C 2004 Acta Phys. Sin. 53 1373 (in Chinese)
[17]Xu W C, Jin W, Xu Y Z, Cui H and Liu S H 2004 Chin. Phys. Lett. 21 1089
[18]Cui H, Xu W C and Liu S H 2004 Chin. Phys. Lett. 21 2212
[19]Chen Y Z, Li Y Z, Gu G and Xu W C 2006 Chin. Phys. Lett. 23 2993
[20]Dai C Q and Chen J L 2012 Chin. Phys. B 21 080507
[21]Ma W W, Li S G, Yin G B, Fu B and Zhang L 2010 Chin. Phys. B 19 104208
[22]Nithyanandan K, Raja R V J and Porsezian K 2013 J. Opt. Soc. Am. B 30 178
[23]Hu T P and Sun X H 2013 Chin. Opt. Lett. 11 070602
[24]Korobko D A, Okhotnikov O G and Zolotovskii I O 2013 J. Opt. Soc. Am. B 30 2377
[25]Finot C, Barviau B, Millot G, Guryanov A, Sysoliatin A and Wabnitz S 2007 Opt. Express 15 15824
[26]Hirooka T and Nakazawa M 2004 Opt. Lett. 29 498
[27]Jiang G Y, Fu Y J, Huang Y and Chen H T 2013 Optik 124 5328
[28]Liu W J, Tian B, Zhang H Q, Xu T and Li H 2009 Phys. Rev. A 79 063810
[29]Liu W J, Tian B, Zhang H Q, Li L L and Xue Y S 2008 Phys. Rev. E 77 066605
[30]Liu W J, Tian B and Zhang H Q 2008 Phys. Rev. E 78 066613
[31]Liu W J, Tian B, Xu T, Sun K and Jiang Y 2010 Ann. Phys. 325 1633
[32]Hirota R 1971 Phys. Rev. Lett. 27 1192
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[3] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[4] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[5] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[6] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[7] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[8] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[9] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
[10] Generation and manipulation of bright spatial bound-soliton pairs under the diffusion effect in photovoltaic photorefractive crystals
Ze-Xian Zhang(张泽贤), Xiao-Yang Zhao(赵晓阳), Ye Li(李烨), Hu Cui(崔虎)†, Zhi-Chao Luo(罗智超), Wen-Cheng Xu(徐文成), and Ai-Ping Luo(罗爱平). Chin. Phys. B, 2020, 29(10): 104208.
[11] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
[12] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[13] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[14] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[15] Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics
Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军). Chin. Phys. B, 2018, 27(3): 030504.
No Suggested Reading articles found!