Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 100305    DOI: 10.1088/1674-1056/23/10/100305
GENERAL Prev   Next  

Excitations of optomechanically driven Bose–Einstein condensates in a cavity: Photodetection measurements

Neha Aggarwala b, Sonam Mahajana, Aranya B. Bhattacherjeeb c, Man Mohana
a Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India;
b Department of Physics, ARSD College, University of Delhi (South Campus), New Delhi-110021, India;
c School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
Abstract  We present a detailed study to analyze the Dicke quantum phase transition within the thermodynamic limit for an optomechanically driven Bose-Einstein condensate in a cavity. The photodetection-based quantum optical measurements have been performed to study the dynamics and excitations of this optomechanical Dicke system. For this, we discuss the eigenvalue analysis, fluorescence spectrum and the homodyne spectrum of the system. It has been shown that the normal phase is negligibly affected by the mechanical mode of the mirror while it has a significant effect in the superradiant phase. We have observed that the eigenvalues and the spectra both exhibit distinct features that can be identified with the photonic, atomic and phononic branches. In the fluorescence spectra, we further observe an asymmetric coherent energy exchange between the three degrees of freedom of the system in the superradiant phase arising as a result of optomechanical interaction and Bloch-Siegert shift.
Keywords:  optomechanical cavity      Bose-Einstein condensates      quantum phase transition  
Received:  07 February 2014      Revised:  07 April 2014      Accepted manuscript online: 
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  64.70.Tg (Quantum phase transitions)  
  37.30.+i (Atoms, molecules, andions incavities)  
Corresponding Authors:  Sonam Mahajan     E-mail:  sonammahajan1987@gmail.com
About author:  03.75.Kk; 64.70.Tg; 37.30.+i

Cite this article: 

Neha Aggarwal, Sonam Mahajan, Aranya B. Bhattacherjee, Man Mohan Excitations of optomechanically driven Bose–Einstein condensates in a cavity: Photodetection measurements 2014 Chin. Phys. B 23 100305

[83]McKeever J, Buck J R, Boozer A D, Kuzmich A, Ngerl H C, Stamper-Kurn D M and Kimble H J 2003 Phys. Rev. Lett. 90 133602
[84]Sauer J A 2004 Phys. Rev. A 69 051804
[1]Rojansky V 1929 Phys. Rev. 33 1
[85]Maunz P, Puppe T, Schuster I, Syassen N, Pinkse P W H and Rempe G 2005 Phys. Rev. Lett. 94 033002
[2]Zimmerman M L, Kash M M and Kleppner D 1980 Phys. Rev. Lett. 45 1092
[86]Giovannetti V, Tombesi P and Vitali D 2001 Phys. Rev. A 63 023812
[1] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[2] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[3] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[4] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[5] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[8] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[9] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[10] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[11] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[12] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[13] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[14] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[15] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
No Suggested Reading articles found!