Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 018102    DOI: 10.1088/1674-1056/23/1/018102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Tunable ultra-wideband terahertz filter based on three-dimensional arrays of H-shaped plasmonic crystals

Yuan Cai (袁偲), Xu Shi-Lin (徐世林), Yao Jian-Quan (姚建铨), Zhao Xiao-Lei (赵晓蕾), Cao Xiao-Long (曹小龙), Wu Liang (吴亮)
Institute of Laser and Opto-electronics, Key Laboratory of Optoelectronic Information Science and Technology, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
Abstract  A face-to-face system of double-layer three-dimensional arrays of H-shaped plasmonic crystals is proposed, and its transmission and filtering properties are investigated in the terahertz regime. Simulation results show that our design has excellent filtering properties. It has an ultra-wide bandgap and passband with steep band-edges, and the transmittance of the passband and the forbidden band are very close to 1 and 0, respectively. As the distance between the two face-to-face plates increases, the resonance frequency exhibits a gradual blueshift from 0.88 THz to 1.30 THz. Therefore, we can dynamically control the bandwidths of bandgap and passband by adding a piezoelectric ceramic plate between the two crystal plates. Furthermore, the dispersion relations of modes and electric field distributions are presented to analyze the generation mechanisms of bandgaps and to explain the location of bandgaps and the frequency shift phenomenon. Due to the fact that our design can provide many resonant modes, the bandwidth of the bandgaps can be greatly broadened. This paper can serve as a valuable reference for the design of terahertz functional devices and three-dimensional terahertz metamaterials.
Keywords:  terahertz      wideband filter      plasmonic crystal      metamaterials  
Received:  25 April 2013      Revised:  08 August 2013      Accepted manuscript online: 
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  46.40.Ef  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61271066, 61101058, and 61107086) and the Science and Technology Committee of Tianjin Province, China (Grant No. 11JCYBJC01100).
Corresponding Authors:  Xu Shi-Lin     E-mail:  xushilin80@163.com

Cite this article: 

Yuan Cai (袁偲), Xu Shi-Lin (徐世林), Yao Jian-Quan (姚建铨), Zhao Xiao-Lei (赵晓蕾), Cao Xiao-Long (曹小龙), Wu Liang (吴亮) Tunable ultra-wideband terahertz filter based on three-dimensional arrays of H-shaped plasmonic crystals 2014 Chin. Phys. B 23 018102

[1] Chan W L, Moravec M L, Baraniuk R G and Mittleman D M 2008 Opt. Lett. 33 974
[2] Wu L, Ling F R, Liu T, Liu J S, Xu Y B and Yao J Q 2011 Opt. Express 19 5118
[3] Xu J Z, Yuan T, Samuel M and Zhang X C 2003 Chin. Phys. Lett. 20 1266
[4] Brucherseifer M, Nagel M, Bolivar P H, Kurz H, Bosserhoff A and Büttner R 2000 Appl. Phy. Lett. 77 4049
[5] Maier S A, Andrews S R, Martín-Moreno L and García-Vidal F J 2006 Phys. Rev. Lett. 97 176805
[6] Seo M A, Park H R, Koo S M, Park D J, Kang J H, Suwal O K, Choi S S, Planken P C M, Park G S, Park N K, Park Q H and Kim D S 2009 Nat. Photonics 3 152
[7] Park D J, Choi S B, Ahn Y H, Rotermund F, Sohn I B, Kang C, Jeong M S and Kim D S 2009 Opt. Express 17 12493
[8] Lee J, Lee K, Park H, Kang G, Yu D H and Kim K 2010 Opt. Lett. 35 2254
[9] Chen Z and Zhang Y X 2013 Chin. Phys. B 22 067802
[10] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theory Tech. 47 2075
[11] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[12] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[13] Liu Z W, Lee H, Xiong Y, Sun C and Zhang X 2007 Science 315 1686
[14] Bingham A, Zhao Y and Grischkowsky D 2005 Appl. Phys. Lett. 87 051101
[15] Dai X Y, Xiang Y J, Wen S C and He H Y 2011 J. Appl. Phys. 109 053104
[16] Xue W R, Guo Y N and Zhang W M 2010 Chin. Phys. B 19 017302
[17] Lee E S, So J K, Park G S, Kim D, Kee C S and Jeon T I 2012 Opt. Express 20 6116
[18] Fan F, Li W, Gu W H, Wang X H and Chang S J 2013 Photonics Nanostruct. 11 48
[19] Ye L F, Xu R M, Zhang Y and Lin W G 2011 Chin. Phys. Lett. 28 124102
[20] Dionne J A, Sweatlock L A, Atwater H A and Polman A 2006 Phys. Rev. B 73 035407
[21] Lin X S and Huang X G 2008 Opt. Lett. 33 2874
[22] Li G H, Chen X S, Li O P, Shao C X, Jiang Y, Huang L J, Ni B, Hu W D and Lu W 2012 J. Phys. D: Appl. Phys. 45 205102
[23] Neutens P, Lagae L, Borghs G and van Dorpe P 2012 Opt. Express 20 3408
[24] Hosseini A and Massoud Y 2006 Opt. Express 14 11318
[25] Li G H, Chen X S, Ni B, Li O P, Huang L J, Jiang Y, Hu W D and Lu W 2013 Nanotechnology 24 205702
[26] Ulbricht R, Hendry E, Shan J, Heinz T F and Bonn M 2011 Rev. Mod. Phys. 83 543
[27] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag) p. 1
[28] Hibbins A P, Sambles J R and Lawrence C R 2002 Appl. Phys. Lett. 80 2410
[29] Sobnack M B, Tan W C, Wanstall N P, Preist T W and Sambles J R 1998 Phys. Rev. Lett. 80 5667
[30] Kats M A, Woolf D, Blanchard R, Yu N F and Capasso F 2011 Opt. Express 19 14860
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[8] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[9] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[10] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[11] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[12] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[13] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[14] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[15] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
No Suggested Reading articles found!