Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 013102    DOI: 10.1088/1674-1056/23/1/013102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effects of pressure and gas-jet thickness on the generation of attosecond pulse

Li Xiao-Yong (李小勇)a b, Wang Guo-Li (王国利)a, Zhou Xiao-Xin (周效信)a
a College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
b Experimental Center, Northwest University for Nationalities, Lanzhou 730030, China
Abstract  We investigate how the intensity and duration of an attosecond pulse generated from high-order harmonic generation are affected by the pressure and thickness of the gas jet by taking into account the macroscopic propagation of both fundamental and harmonic fields. Our simulations show that, limited by the propagation effects, especially the absorption of harmonics, the intensity of an attosecond pulse cannot be improved by just independently increasing the gas pressure or the medium length. On the other hand, due to good phase-matching conditions, the duration of a generated attosecond pulse can be improved by changing the gas pressure.
Keywords:  high-order harmonic generation      attosecond pulse      macroscopic propagation  
Received:  03 June 2013      Revised:  16 August 2013      Accepted manuscript online: 
PACS:  31.70.Hq (Time-dependent phenomena: excitation and relaxation processes, and reaction rates)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264036 and 11064013).
Corresponding Authors:  Zhou Xiao-Xin     E-mail:  zhouxx@nwnu.edu.cn

Cite this article: 

Li Xiao-Yong (李小勇), Wang Guo-Li (王国利), Zhou Xiao-Xin (周效信) Effects of pressure and gas-jet thickness on the generation of attosecond pulse 2014 Chin. Phys. B 23 013102

[1] Wu J, Zhai Z and Liu X S 2010 Chin. Phys. B 19 093201
[2] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509
[3] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163
[4] Falcão-Filho E L, Gkortsas V M, Gordon A and Kärtner A 2009 Opt. Express 17 11217
[5] Tate J, Auguste T, Muller H G, Saliéres P, Agostini P and DiMauro L F 2007 Phys. Rev. Lett. 98 013901
[6] Dachraoui H, Auguste T, Helmstedt A, Bartz P, Michelswirth M, Mueller N, Pfeiffer W, Saliéres P and Heinzmann U 2009 J. Phys. B 42 175402
[7] Gaarde M B, Tate J L and Schafer K J 2008 J. Phys. B 41 132001
[8] Li Q G, Lu P X, Hong W Y, Zhang Q B and Yang Z Y 2009 Phys. Rev. A 80 043417
[9] Jin C, Zhou X X and Zhao S F 2010 Chin. Phys. Lett. 27 033301
[10] Lewenstein M, Balcou P, Ivanov M Y, L’Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
[11] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[12] Takahashi E, Tosa V, Nabekawa Y and Midorikawa K 2003 Phys. Rev. A 68 023808
[13] Tosa V, Kim K T and Nam C H 2009 Phys. Rev. A 79 043828
[14] Yao J P, Xiong H, Xu H, Fu Y X, Zeng B, Chu W, Cheng Y, Xu Z Z, Liu X J and Chen J 2010 Scientia Sinica Physica, Mechanica & Astronomica 53 1054
[15] Peng Y, Yang X and Zeng H P 2007 Phys. Rev. A 76 063823
[16] Meyer S, Chichkov B N and Wellegehausen B 2000 Appl. Phys. B 70 221
[17] Wang G L, Jin C, Le A T and Lin C D 2012 Phys. Rev. A 86 015401
[18] Wang G L, Jin C, Le A T and Lin C D 2011 Phys. Rev. A 84 053404
[19] Jin C, Le A T and Lin C D 2011 Phys. Rev. A 83 023411
[20] Ammosov M V, Delone N B and Krainov V P 1986 Sov. Phys. JETP 64 1191
[21] Tong X M and Lin C D 2005 J. Phys. B 38 2593
[22] Antoine P, L’Huillier A and Lewenstein M 1996 Phys. Rev. Lett. 77 1234
[23] Chantler C T et al. 2005 X-ray Form Factor, Attenuation and Scattering Tables (Gaithersburg: National Institute of Standards and Technology) Ver. 2.1
[24] Jin C, Le A T and Lin C D 2009 Phys. Rev. A 79 053413
[25] Gaarde M B and Schafer K 2002 Phys. Rev. Lett. 89 213901
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[4] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[5] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[6] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[7] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[8] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[9] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[10] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[11] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[12] Amplitude and rotation of the ellipticity of harmonicsfrom a linearly polarized laser field
Ping Li(李萍), Na Gao(高娜), Rui-Xian Yu(蔚瑞贤), Jun Wang(王俊), Su-Yu Li(李苏宇), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2022, 31(10): 103303.
[13] Generation of non-integer high-order harmonics and significant enhancement of harmonic intensity
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2021, 30(4): 043202.
[14] Effects of initial electronic state on vortex patterns in counter-rotating circularly polarized attosecond pulses
Qi Zhen(甄琪), Jia-He Chen(陈佳贺), Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2021, 30(2): 024203.
[15] Minimum structure of high-harmonic spectrafrom aligned O2 and N2 molecules
Bo Yan(闫博), Yi-Chen Wang(王一琛), Qing-Hua Gao(高庆华), Fang-Jing Cheng(程方晶), Qiu-Shuang Jing(景秋霜), Hong-Jing Liang(梁红静), and Ri Ma(马日). Chin. Phys. B, 2021, 30(11): 114213.
No Suggested Reading articles found!