Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 013101    DOI: 10.1088/1674-1056/23/1/013101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Simulating electron momentum spectra of iso-C2H2Cl2:A study of the core electronic structure

Huang Yan-Ru (黄艳茹), Chen Ming-Ming (陈明明)
Department of Physics, Liaoning Shihua University, Fushun 113001, China
Abstract  Electron momentum spectroscopy (EMS) has been used for the first time to study core electronic structure of iso-C2H2Cl2. In the present work, the pronounced difference between ionization energies of two C1s core orbitals (2A1 and 3A1) is seen as a chemical shift of 3 eV, which is due to different chemical environments of the related carbon atoms. Both the calculated spherically averaged core electron momentum distributions (MDs) and three-dimensional electron momentum density maps show that these core molecular orbitals (MOs) 2A1 and 3A1 exhibit strong atomic orbital characteristics in real and momentum space. However, the core states 2B2 and 4A1, which are almost degenerate and related to two equivalent atoms, exhibit notable differences between the momentum and position depictions. In contrast to the position space, the momentum density maps of these two core MOs highlight the interference effects which are due to the nuclear positions. The 2B2 orbital of iso-C2H2Cl2 is the antisymmetric counterpart of the 4A1 core orbital in real space. However, it relates to the 4A1 orbital by an exchange of maxima and minima in momentum space. Due to interference effects between electrons scattered from different atomic centers, modulations with a periodicity of 1.12 a.u. can be seen in the computed momentum densities, which tend to decay with increasing electron momenta. Accordingly, the EMS can not only effectively image the electronic structure of compounds by studying valence orbitals, but also provides direct information on the nature of the nuclear geometry by investigating the core states.
Keywords:  (e,2e) reaction      chemical shift      momentum distributions      core orbitals  
Received:  13 June 2013      Revised:  02 July 2013      Accepted manuscript online: 
PACS:  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  31.15.xr (Self-consistent-field methods)  
  33.15.-e (Properties of molecules)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074144).
Corresponding Authors:  Huang Yan-Ru     E-mail:  hyr04@mails.tsinghua.edu.cn

Cite this article: 

Huang Yan-Ru (黄艳茹), Chen Ming-Ming (陈明明) Simulating electron momentum spectra of iso-C2H2Cl2:A study of the core electronic structure 2014 Chin. Phys. B 23 013101

[1] Weigold E and McCarthy I E 1999 Electron Momentum Spectroscopy (New York: Kluwer Academic/Plenum Publishers)
[2] Deng J K, Ning C G, Ren X G, Su G L, Zhang S F, Huang Y R, Yang T C and Liu K 2007 J. Electron. Spectrosc. Relat. Phenom. 161 43
[3] Shi L L, Liu K, Luo Z H, Ning C G and Deng J K 2011 Chin. Phys. B 20 13403
[4] Liu K, Ning C G and Deng J K 2010 Chin. Phys. Lett. 27 073403
[5] Ning C G, Zhang S F, Deng J K, Liu K, Huang Y R and Luo Z H 2008 Chin. Phys. B 17 1729
[6] Yang T C, Ning C G, Su G L, Deng J K, Zhang S F, Ren X G and Huang Y R 2006 Chin. Phys. Lett. 23 1157
[7] Zhang S F, Ning C G, Deng J K, Ren X G, Su G L, Yang T C and Huang Y R 2006 Chin. Phys. Lett. 23 583
[8] Deng J K, Li G Q, Huang J D, Wang F, Ning C G, Lu J, He Y, Wang X D, Zhang Y A, Gao H, Wang Y and Zheng Y Y 2002 Chin. Phys. Lett. 19 47
[9] Ren X G, Ning C G, Deng J K, Zhang S F, Su G L, Li B and Chen X J 2005 Chin. Phys. Lett. 22 1382
[10] McCarthy I E and Weigold E 1991 Rep. Prog. Phys. 54 789
[11] Becke A D 1993 J. Chem. Phys. 98 5648
[12] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[13] Feller D 1992 J. Chem. Phys. 96 6104
[14] Deleuze M S, Pang W N, Salam A and Shang R C 2001 J. Am. Chem. Soc. 123 4049
[15] Knippenberg S, Huang Y R, Hajgato B, Francois J P, Deng J K and Deleuze M S 2007 J. Chem. Phys. 127 174306
[16] Ning C G, Luo Z H, Huang Y R, Hajgató B, Morini F, Deng J K and Deleuze M S 2008 J. Phys. B 41 175103
[17] Ning C G, Hajgató B, Huang Y R, Zhang S F, Knippenberg S, Deng J K and Deleuze M S 2008 Chem. Phys. 343 19
[18] Chen X J, Yang G O, Jia C C, Peng L L, Xu C K, Tian S K and Xu K Z 2000 J. Electron. Spectrosc. Relat. Phenom. 107 273
[19] Chen X J, Zhou L X, Zhang X H, Yin X F, Xu C K, Shan X, Wei Z and Xu K Z 2004 J. Chem. Phys. 120 7933
[20] Wang F 2003 J. Phys. Chem. A 107 10199
[21] Liu K, Ning C G, Luo Z H, Shi L L and Deng J K 2010 Chem. Phys. Lett. 497 229
[22] Ren X G, Ning C G, Deng J K, Zhang S F and Su G L 2004 Chem. Phys. Lett. 397 82
[23] Huang Y R, Hajgató B, Ning C G, Zhang S F, Liu K, Luo Z H, Deng J K and Deleuze M S 2008 J. Phys. Chem. A 112 2339
[24] Huang Y R, Ning C G, Deng J K and Deleuze M S 2008 Phys. Chem. Chem. Phys. 10 2374
[25] Miao Y R, Ning C G and Deng J K 2011 Phys. Rev. A 83 062706
[26] Bharathi S M, Grisogono A M, Lahmam-bennaani A, Pascual R and Weigold E 1991 J. Electron. Spectrosc. Relat. Phenom. 53 271
[27] Wang F, Larkins F P, Brunger M J, Michalewicz M T and Winkler D A 2001 Spectrochim. Acta Part A 57 9
[28] Downton M and Wang F 2004 Chem. Phys. Lett. 384 144
[29] Takahata Y and Chong D P 2003 J. Electron. Spectrosc. Relat. Phenom. 133 69
[30] Siegbahn K, Nordling C, Johansson G, Hedman J, Heden P F, Hamrin K, Gelius U, Bergmark T, Werme L O, Manne R and Baer Y 1969 ESCA Applied to Free Molecules (Amsterdam: North-Holland Publishing Company)
[31] Su G L, Ning C G, Deng J K and Wang F 2006 Chem. Phys. Lett. 422 308
[32] Cohen H D and Fano U 1966 Phys. Rev. 150 30
[33] Gorunganthu R R, Coplan M A, Leung K T, Tossell J A and Moore J H 1989 J. Chem. Phys. 91 1994
[34] Ying J F, Zhu H, Mathers C P, Gover B N, Banjavcic M P, Zheng Y Y, Brion C E and Leung K T 1993 J. Chem. Phys. 98 4512
[35] Mathers C P, Ying J F, Gover B N and Leung K T 1994 Chem. Phys. 184 295
[36] Mathers C P, Gover B N, Ying J F, Zhu H and Leung K T 1994 J. Am. Chem. Soc. 116 7250
[37] Kimura K, Katsumata S, Achiba Y, Yamazaki T and Iwata S 1981 Handbook of He I Photoelectron Spectra of Fundamental Organic Molecules (New York: Halsted Press) p. 59
[38] von Niessen W, Åsbrink L and Bieri G 1982 J. Electron Spectrosc. Relat. Phenom. 26 173
[39] Katrib A, Debies T P, Colton R J, Lee T h and Rabalais J W 1973 Chem. Phys. Lett. 22 196
[40] Manne R 1974 J. Electron Spectrosc. Relat. Phenom. 3 327
[41] Ying J F and Leung K T 1993 J. Electron Spectrosc. Relat. Phenom. 63 75
[42] Deleuze M S, Giuffreda M G, Francois J P and Cederbaum L S 1999 J. Chem. Phys. 111 5851
[43] Deleuze M S and Cederbaum L S 1999 Adv. Quantum. Chem. 35 77
[44] Deleuze M S, Giuffreda M G, Francois J P and Cederbaum L S 2000 J. Chem. Phys. 112 5325
[45] Mei L, Chuaqui M, Mathers C P, Ying J F and Leung K T 1994 J. Chem. Phys. 101 3558
[46] Mei L, Chuaqui M, Mathers C P, Ying J F and Leung K T 1994 Chem. Phys. 188 347
[47] Jolly W L, Bomben K D and Eyerman C J 1984 Atom. Data Nucl. Data Tables 31 433
[48] Dohrodey N V, Cederbaum L S and Tarahtelli F 1998 J. Phys. Chem. A 102 9405
[49] Dohrodey N V, Cederbaum L S and Tarahtelli F 2000 Phys. Rev. B 61 7336
[50] Dohrodey N V, Cederbaum L S and Tarahtelli F 1998 Phys. Rev. B 58 2316
[51] Liu K, Ning C G and Deng J K 2009 Phys. Rev. A 80 022716
[52] Zhu J S, Deng J K and Ning C G 2012 Phys. Rev. A 85 052714
[53] Miao Y R, Deng J K and Ning C G 2012 J. Chem. Phys. 136 124302
[54] Miao Y R, Ning C G, Liu K and Deng J K 2011 J. Chem. Phys. 134 204304
[55] Wang F 2005 J. Mol. Struct. 728 31
[1] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[2] Molecular photoelectron momentum and angular distributions of N2 molecules by ultrashort attosecond laser pulses
Si-Qi Zhang(张思琪), Qi Zhen(甄琪), Zhi-Jie Yang(杨志杰), Jun Zhang(张军), Ai-Hua Liu(刘爱华), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(4): 043201.
[3] Effects of initial electronic state on vortex patterns in counter-rotating circularly polarized attosecond pulses
Qi Zhen(甄琪), Jia-He Chen(陈佳贺), Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2021, 30(2): 024203.
[4] Ultrafast photoionization of ions and molecules by orthogonally polarized intense laser pulses: Effects of the time delay
Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙), Wei Feng(冯伟), Sheng-Peng Zhou(周胜鹏), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(1): 013201.
[5] Photoelectron momentum distributions of single-photon ionization under a pair of elliptically polarized attosecond laser pulses
Hui-Fang Cui(崔会芳), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2020, 29(7): 074203.
[6] Effect of elliptical polarizations on nonsequential double ionization in two-color elliptically polarized laser fields
Tong-Tong Xu(徐彤彤), Jia-He Chen(陈佳贺), Xue-Fei Pan(潘雪飞), Hong-Dan Zhang(张宏丹), Shuai Ben(贲帅), Xue-Shen Liu(刘学深). Chin. Phys. B, 2018, 27(9): 093201.
[7] Momentum distribution and non-local high order correlation functions of 1D strongly interacting Bose gas
EJKP Nandani, Xi-Wen Guan(管习文). Chin. Phys. B, 2018, 27(7): 070306.
[8] Photoelectron longitudinal momentum distributions containing nondipole effects
Yi-Ning Huo(霍一宁), Jian Li(李健), Feng-Cai Ma(马凤才). Chin. Phys. B, 2018, 27(1): 013203.
[9] Relativistic and distorted wave effects on Xe 4d electron momentum distributions
Minfu Zhao(赵敏福), Xu Shan(单旭), Shanshan Niu(牛姗姗), Xiangjun Chen(陈向军). Chin. Phys. B, 2017, 26(9): 093103.
[10] Origin of diffraction fringes in two-dimensional photoelectronmomentum distributions for single ionization of atoms in few-cycle intense laser pulses
Guo Zhi-Jian (郭志坚), Chen Zhang-Jin (陈长进), Zhou Xiao-Xin (周效信). Chin. Phys. B, 2014, 23(4): 043201.
No Suggested Reading articles found!