Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 010301    DOI: 10.1088/1674-1056/23/1/010301
GENERAL Prev   Next  

Implementation of a one-dimensional quantum walk in both position and phase spaces

Qin Hao (秦豪)a, Xue Peng (薛鹏)a b
a Department of Physics, Southeast University, Nanjing 211189, China;
b State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  Quantum walks have been investigated as they have remarkably different features in contrast to classical random walks. We present a quantum walk in a one-dimensional architecture, consisting of two coins and a walker whose evolution is in both position and phase spaces alternately controlled by the two coins respectively. By analyzing the dynamics evolution of the walker in both the position and phase spaces, we observe an influence on the quantum walk in one space from that in the other space, which behaves like decoherence. We propose an implementation of the two-coin quantum walk in both position and phase spaces via cavity quantum electrodynamics (QED).
Keywords:  quantum walks      cavity quantum electrodynamics  
Received:  29 June 2013      Revised:  28 August 2013      Accepted manuscript online: 
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004029 and 11174052), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010422), the Ph.D. Program of the Ministry of Education of China, the Excellent Young Teachers Program of Southeast University, China, the National Basic Research Program of China (Grant No. 2011CB921203), and the Open Fund from the State Key Laboratory of Precision Spectroscopy of East China Normal University, China.
Corresponding Authors:  Xue Peng     E-mail:  gnep.eux@gmail.com

Cite this article: 

Qin Hao (秦豪), Xue Peng (薛鹏) Implementation of a one-dimensional quantum walk in both position and phase spaces 2014 Chin. Phys. B 23 010301

[1] Ambainis A 2003 Int. J. Quantum Inf. 1 507
[2] Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S and Spielman D A 2003 Proc. 35th ACM Symposium on Theory of Computing, pp. 59–68
[3] Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
[4] Kempe J 2003 Contemp. Phys. 44 307
[5] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. Lett. 91 130602
[6] Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429
[7] Oliveira A C, Portugal R and Donangelo R 2006 Phys. Rev. A 74 012312
[8] Xue P and Wu J Z 2012 Chin. Phys. B 21 010308
[9] Xue P 2012 Chin. Phys. B 21 100306
[10] Xue P 2011 Chin. Phys. B 20 100310
[11] Childs A M 2009 Phys. Rev. Lett. 102 180501
[12] Childs A M, Gosset D and Webb Z 2013 Science 339 791
[13] Cote R, Russell A, Eyler E E and Gould P L 2006 New J. Phys. 8 156
[14] Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
[15] Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
[16] Karski M, Forster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174
[17] Du J, Li H, Xu X, Shi M, Wu J, Zhou X and Han R 2003 Phys. Rev. A 67 042316
[18] Peruzzo A, Lobino M, Matthews J C F, Matsuda N, Politi A, Poulios K, Zhou X, Lahini Y, Ismail N, Worhoff K, Bromberg Y, Silberberg Y, Thompson M G and O’Brien J L 2010 Science 329 1500
[19] Perets H B, Lahini Y, Pozzi F, Sorel M, Morandotti R and Silberberg Y 2008 Phys. Rev. Lett. 100 170506
[20] Schreiber A, Gábris A, Rohde P P, Laiho K, Štefaňák M, Potoček V, Hamilton C, Jex I and Silberhorn C 2012 Science 336 55
[21] Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602
[22] Schreiber A, Cassemiro K N, Potoček V, Gábris A, Mosley P J, Andersson E, Jex I and Silberhorn C 2010 Phys. Rev. Lett. 104 050502
[23] Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R and Osellame R 2012 Phys. Rev. Lett. 108 010502
[24] Xue P and Sanders B C 2008 New J. Phys. 10 053025
[25] Xue P, Sanders B C and Leibfried D 2009 Phys. Rev. Lett. 103 183602
[26] Xue P, Sanders B C, Blais A and Lalumiére K 2008 Phys. Rev. A 78 042334
[27] Xue P and Sanders B C 2013 Phys. Rev. A 87 022334
[28] Xue P and Zhang Y S 2013 Chin. Phys. B 22 070302
[29] Xu Y Y, Zhou F, Chen L, Xie Y, Xue P and Feng M 2012 Chin. Phys. B 21 040304
[30] Sanders B C, Bartlett S D, Tregenna B and Knight P L 2003 Phys. Rev. A 67 042305
[31] Xue P 2013 J. Comput. Theor. Nanosci. 10 1606
[32] Pellizzari T, Gardiner S A, Cirac J I and Zoller P 1995 Phys. Rev. Lett. 75 3788
[33] Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[34] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[35] Xiao Y F, Lin X M, Gao J, Yang Y, Han Z F and Guo G C 2004 Phys. Rev. A 70 042314
[36] Xue P, Ficek Z and Sanders B C 2012 Phys. Rev. A 86 043826
[37] Xue P 2010 Chin. Phys. Lett. 27 060301
[38] Xue P and Xiao Y F 2006 Phys. Rev. Lett. 97 140501
[39] Xiao Y F, Zou C L, Xue P, Xiao L X, Li Y, Dong C H, Han Z F and Gong Q H 2010 Phys. Rev. A 81 053807
[40] Xue P, Han C, Yu B, Lin X M and Guo G C 2004 Phys. Rev. A 69 052318
[41] Xiao Y F, Han Z F, Gao J and Guo G C 2006 J. Phys. B 39 485
[42] Chen C Y, Zhang X L, Deng Z J, Gao K L and Feng M 2006 Phys. Rev. A 74 032328
[1] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[2] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[3] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[4] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[5] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[6] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[7] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
[8] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[9] The entanglement of deterministic aperiodic quantum walks
Ting-Ting Liu(刘婷婷), Ya-Yun Hu(胡亚运), Jing Zhao(赵静), Ming Zhong(钟鸣), Pei-Qing Tong(童培庆). Chin. Phys. B, 2018, 27(12): 120305.
[10] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[11] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[12] A quantum walk in phase space with resonator-assisted double quantum dots
Zhi-Hao Bian(边志浩), Hao Qin(秦豪), Xiang Zhan(詹翔), Jian Li(李剑), Peng Xue(薛鹏). Chin. Phys. B, 2016, 25(2): 020307.
[13] Localization of quantum walks on finite graphs
Yang-Yi Hu(胡杨熠), Ping-Xing Chen(陈平形). Chin. Phys. B, 2016, 25(12): 120303.
[14] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[15] Quantum walks with coins undergoing different quantum noisy channels
Hao Qin(秦豪) and Peng Xue(薛鹏). Chin. Phys. B, 2016, 25(1): 010501.
No Suggested Reading articles found!