Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 010302    DOI: 10.1088/1674-1056/23/1/010302
GENERAL Prev   Next  

Monogamy of quantum correlations in the one-dimensional anisotropic XY model

Xu Shuai (徐帅), Song Xue-Ke (宋学科), Ye Liu (叶柳)
School of Physics & Material Science, Anhui University, Hefei 230039, China
Abstract  In this paper, the monogamy properties of some quantum correlations, including the geometric quantum discord, concurrence, entanglement of formation and entropy quantum discord, in the anisotropic spin-1/2 XY model with staggered Dzyaloshinskii–Moriya (DM) interaction have been investigated using the quantum renormalization group (QRG) method. We summarize the monogamy relation for different quantum correlation measures and make an explicit comparison. Through mathematical calculations and analysis, we obtain that no matter whether the QRG steps are carried out, the monogamy of the given states are always unaltered. Moreover, we conclude that the geometric quantum discord and concurrence obey the monogamy property while other quantum correlation measures, such as entanglement of formation and quantum discord, violate it for this given model.
Keywords:  monogamy relation      geometric quantum discord      entanglement of formation      entropy quantum discord  
Received:  09 April 2013      Revised:  04 June 2013      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 11074002 and 61275119), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103401110003), and the Personal Development Foundation of Anhui Province, China (Grant No. 2008Z018).
Corresponding Authors:  Ye Liu     E-mail:  yeliu@ahu.edu.cn

Cite this article: 

Xu Shuai (徐帅), Song Xue-Ke (宋学科), Ye Liu (叶柳) Monogamy of quantum correlations in the one-dimensional anisotropic XY model 2014 Chin. Phys. B 23 010302

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[3] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[4] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[5] Ge G Q, Qin C, Yin M and Huang Y H 2011 Chin. Phys. B 20 080304
[6] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[7] Horodecki M, Horodecki P and Horodecki R 1998 Phys. Rev. Lett. 80 5239
[8] Li Y L and Li X M 2008 Chin. Phys. B 17 0812
[9] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[10] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[11] Ferraro A, Aolito L, Cavalcanti D, Cucchietti F M and Acín A 2010 Phys. Rev. A 81 052318
[12] Ding B F, Wang X Y and Zhao H P 2011 Chin. Phys. B 20 100302
[13] Sarandy M S 2009 Phys. Rev. A 80 022108
[14] Luo S and Zhang Q 2009 J. Stat. Phys. 136 165
[15] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
[16] Han W, Zhang Y J and Xia Y J 2013 Chin. Phys. B 22 010306
[17] Dakić B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[18] Tufarelli T, Girolami D, Vasile R, Bose S and Adesso G 2012 arXiv:1205.0251
[19] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[20] Ekert A K 1991 Phys. Rev. Lett. 67 661
[21] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[22] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[23] Koashi M and Winter A 2004 Phys. Rev. A 69 022309
[24] Song X K, Wu T and Ye L 2013 Mod. Phys. Lett. B 27 1350049
[25] Man Z X, Xia Y J and An N B 2010 New. J. Phys. 12 033020
[26] Osborne T J and Verstraete F 2006 Phys. Rev. Lett. 96 220503
[27] Martín-Delgado M A and Sierra G 1996 Int. J. Mod. Phys. A 11 3145
[28] Langari A 1998 Phys. Rev. B 58 14467
[29] Langari A 2004 Phys. Rev. B 69 100402
[30] Jafari R and Langari A 2007 Phys. Rev. B 76 014412 [RefAutoNo] Jafari R and Langari A 2006 Physica A 364 213
[31] Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 84 042302
[32] Rau A R P 2009 J. Phys. A 42 412002
[33] Streltsov A, Adesso G, Piani M and Bruß D 2001 Phys. Rev. Lett. 109 050503
[34] Fanchini F F, Cornelio M F, de Oliveira M C and Caldeira A O 2011 Phys. Rev. A 84 012313
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[3] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[4] Tighter constraints of multiqubit entanglementin terms of Rényi-α entropy
Meng-Li Guo(郭梦丽), Bo Li(李波), Zhi-Xi Wang(王志玺), Shao-Ming Fei(费少明). Chin. Phys. B, 2020, 29(7): 070304.
[5] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[6] Geometric quantum discord and Berry phase between two charge qubits coupled by a quantum transmission line
Zhu Han-Jie (朱汉杰), Zhang Guo-Feng (张国锋). Chin. Phys. B, 2014, 23(12): 120306.
[7] Monogamy relations in tripartite quantum system
Li Jiao-Jiao(李姣姣) and Wang Zhi-Xi(王志玺). Chin. Phys. B, 2010, 19(10): 100310.
No Suggested Reading articles found!