|
|
Monogamy of quantum correlations in the one-dimensional anisotropic XY model |
Xu Shuai (徐帅), Song Xue-Ke (宋学科), Ye Liu (叶柳) |
School of Physics & Material Science, Anhui University, Hefei 230039, China |
|
|
Abstract In this paper, the monogamy properties of some quantum correlations, including the geometric quantum discord, concurrence, entanglement of formation and entropy quantum discord, in the anisotropic spin-1/2 XY model with staggered Dzyaloshinskii–Moriya (DM) interaction have been investigated using the quantum renormalization group (QRG) method. We summarize the monogamy relation for different quantum correlation measures and make an explicit comparison. Through mathematical calculations and analysis, we obtain that no matter whether the QRG steps are carried out, the monogamy of the given states are always unaltered. Moreover, we conclude that the geometric quantum discord and concurrence obey the monogamy property while other quantum correlation measures, such as entanglement of formation and quantum discord, violate it for this given model.
|
Received: 09 April 2013
Revised: 04 June 2013
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.-a
|
(Quantum information)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 11074002 and 61275119), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103401110003), and the Personal Development Foundation of Anhui Province, China (Grant No. 2008Z018). |
Corresponding Authors:
Ye Liu
E-mail: yeliu@ahu.edu.cn
|
Cite this article:
Xu Shuai (徐帅), Song Xue-Ke (宋学科), Ye Liu (叶柳) Monogamy of quantum correlations in the one-dimensional anisotropic XY model 2014 Chin. Phys. B 23 010302
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
|
[2] |
Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
|
[3] |
Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
|
[4] |
Wootters W K 1998 Phys. Rev. Lett. 80 2245
|
[5] |
Ge G Q, Qin C, Yin M and Huang Y H 2011 Chin. Phys. B 20 080304
|
[6] |
Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
|
[7] |
Horodecki M, Horodecki P and Horodecki R 1998 Phys. Rev. Lett. 80 5239
|
[8] |
Li Y L and Li X M 2008 Chin. Phys. B 17 0812
|
[9] |
Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
|
[10] |
Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
|
[11] |
Ferraro A, Aolito L, Cavalcanti D, Cucchietti F M and Acín A 2010 Phys. Rev. A 81 052318
|
[12] |
Ding B F, Wang X Y and Zhao H P 2011 Chin. Phys. B 20 100302
|
[13] |
Sarandy M S 2009 Phys. Rev. A 80 022108
|
[14] |
Luo S and Zhang Q 2009 J. Stat. Phys. 136 165
|
[15] |
Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
|
[16] |
Han W, Zhang Y J and Xia Y J 2013 Chin. Phys. B 22 010306
|
[17] |
Dakić B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
|
[18] |
Tufarelli T, Girolami D, Vasile R, Bose S and Adesso G 2012 arXiv:1205.0251
|
[19] |
Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
|
[20] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[21] |
Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
|
[22] |
Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
|
[23] |
Koashi M and Winter A 2004 Phys. Rev. A 69 022309
|
[24] |
Song X K, Wu T and Ye L 2013 Mod. Phys. Lett. B 27 1350049
|
[25] |
Man Z X, Xia Y J and An N B 2010 New. J. Phys. 12 033020
|
[26] |
Osborne T J and Verstraete F 2006 Phys. Rev. Lett. 96 220503
|
[27] |
Martín-Delgado M A and Sierra G 1996 Int. J. Mod. Phys. A 11 3145
|
[28] |
Langari A 1998 Phys. Rev. B 58 14467
|
[29] |
Langari A 2004 Phys. Rev. B 69 100402
|
[30] |
Jafari R and Langari A 2007 Phys. Rev. B 76 014412 [RefAutoNo] Jafari R and Langari A 2006 Physica A 364 213
|
[31] |
Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 84 042302
|
[32] |
Rau A R P 2009 J. Phys. A 42 412002
|
[33] |
Streltsov A, Adesso G, Piani M and Bruß D 2001 Phys. Rev. Lett. 109 050503
|
[34] |
Fanchini F F, Cornelio M F, de Oliveira M C and Caldeira A O 2011 Phys. Rev. A 84 012313
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|