|
|
Quantum walks with coins undergoing different quantum noisy channels |
Hao Qin(秦豪)1 and Peng Xue(薛鹏)1,2 |
1. Department of Physics, Southeast University, Nanjing 211189, China;
2. Beijing Institute of Mechanical and Electrical Space, Beijing 100094, China |
|
|
Abstract Quantum walks have significantly different properties compared to classical random walks, which have potential applications in quantum computation and quantum simulation. We study Hadamard quantum walks with coins undergoing different quantum noisy channels and deduce the analytical expressions of the first two moments of position in the long-time limit. Numerical simulations have been done, the results are compared with the analytical results, and they match extremely well. We show that the variance of the position distributions of the walks grows linearly with time when enough steps are taken and the linear coefficient is affected by the strength of the quantum noisy channels.
|
Received: 08 July 2015
Revised: 12 September 2015
Accepted manuscript online:
|
PACS:
|
05.40.Fb
|
(Random walks and Levy flights)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174052 and 11474049) and the CAST Innovation Fund, China. |
Corresponding Authors:
Peng Xue
E-mail: gnep.eux@gmail.com
|
Cite this article:
Hao Qin(秦豪) and Peng Xue(薛鹏) Quantum walks with coins undergoing different quantum noisy channels 2016 Chin. Phys. B 25 010501
|
[1] |
Barber M 1970 Random and Restricted Walks: Theory and Applications (New York: Gordon and Breach)
|
[2] |
Berg H C 1993 Random Walks in Biology (Princeton: Princeton Univ. Press)
|
[3] |
Fama E F 1995 Financ. Anal. J. 51 75
|
[4] |
Dür W, Raussendorf R, Kendon V M and Briegel H 2002 Phys. Rev. A 66 052319
|
[5] |
Ambainis A 2003 Int. J. Quantum Inf. 1 507
|
[6] |
Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S and Spielman D A 2003 Proc. 35th ACM Symposium on Theory of Computing pp. 59-68
|
[7] |
Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
|
[8] |
Kempe J 2003 Contempo. Phys. 44 307
|
[9] |
Zhang R, Xu Y and Xue P 2015 Chin. Phys. B 24 010303
|
[10] |
Zhang R and Xue P 2014 Quant. Inf. Process. 13 1825
|
[11] |
Xue P and Sanders B C 2013 Phys. Rev. A 87 022334
|
[12] |
Xue P and Sanders B C 2012 Phys. Rev. A 85 022307
|
[13] |
Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. Lett. 91 130602
|
[14] |
Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429
|
[15] |
Xue P and Sanders B C 2013 Phys. Rev. A 87 022334
|
[16] |
Zhang R, Xue P and Twamley J 2014 Phys. Rev. A 89 042317
|
[17] |
Zhan X, Qin H, Bian Z H, Li J and Xue P 2014 Phys. Rev. A 90 012331
|
[18] |
Childs A M 2009 Phys. Rev. Lett. 102 180501
|
[19] |
Childs A M, Gosset D and Webb Z 2013 Science 339 791
|
[20] |
Sension R J 2007 Nature 446 740
|
[21] |
Xue P, Sanders B C and Leibfreid D 2009 Phys. Rev. Lett. 103 183602
|
[22] |
Xue P and Sanders B C 2008 New J. Phys. 10 053025
|
[23] |
Xue P, Sanders B C, Blais A and Lalumiere K 2008 Phys. Rev. A 78 042334
|
[24] |
Xue P 2013 The Journal of Computational and Theoretical Nanoscience: Special Issue: Theoretical and Mathematical Aspects of the Discrete Time Quantum Walk 10 1
|
[25] |
Qin H and Xue P 2014 Chin. Phys. B 23 010301
|
[26] |
Genske M, Alt W, Steffen A, Werner A H, Werner R F, Meschede D and Alberti A 2013 Phys. Rev. Lett. 110 190601
|
[27] |
Zahringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
|
[28] |
Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein H, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
|
[29] |
Karski M, Forster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174
|
[30] |
Du J, Li H, Xu X, Shi M, Wu J, Zhou X and Han R 2003 Phys. Rev. A 67 042316
|
[31] |
Ryan C A, Laforest M, Boileau J C and Laflamme R 2005 Phys. Rev. A 72 062317
|
[32] |
Xue P, Zhang R, Qin H, Zhan X, Bian Z, Li J and Sanders B C 2015 Phys. Rev. Lett. 114 140502
|
[33] |
Bian Z, Li J, Qin H, Zhan X, Zhang R, Sanders B C and Xue P 2015 Phys. Rev. Lett. 114 203602
|
[34] |
Peruzzo A, Lobino M, Matthews J C F, Matsuda N, Politi A, Poulios K, Zhou X, Lahini Y, Ismail N, Worhoff K, Bromberg Y, Silberberg Y, Thompson M G and Obrien J L 2010 Science 329 1500
|
[35] |
Schreiber A, Gabris A, Rohde P P, Laiho K, Stefanak M, Potocek V, Hamilton C, Jex I and Silberhorn C 2012 Science 336 55
|
[36] |
Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602
|
[37] |
Schreiber A, Cassemiro K N, Potocek V, Gabris A, Mosley P J, Andersson E, Jex I and Silberhorn C 2010 Phys. Rev. Lett. 104 050502
|
[38] |
Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R and Osellame R 2012 Phys. Rev. Lett. 108 010502
|
[39] |
Solntsev A S, Sukhorukov A A, Neshev D N and Kivshar Y S 2012 Phys. Rev. Lett. 108 023601
|
[40] |
Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E and White A G 2012 Nat. Commun. 3 882
|
[41] |
Crespi A, Osellame R, Ramponi R, Giovannetti V, Fazio R, Sansoni L, Nicola F D, Sciarrino F and Mataloni P 2013 Nat. Photon. 7 322
|
[42] |
Xue P, Qin H and Tang B 2014 Sci. Rep. 4 4825
|
[43] |
Xue P, Qin H, Tang B and Sanders B C 2014 New J. Phys. 16 053009
|
[44] |
Xue P and Zhang Y S 2013 Chin. Phys. B 22 070302
|
[45] |
Zhang R, Qin H, Tang B and Xue P 2013 Chin. Phys. B 22 110312
|
[46] |
Zhao J and Tong P 2015 Quant. Inf. Process. 14 2357
|
[47] |
Santos R A M, Portugal R and Fragoso M D 2014 Quant. Inf. Process. 13 559
|
[48] |
Oliveira A C, Portugal R and Donangelo R 2006 Phys. Rev. A 74 012312
|
[49] |
Sanders B C, Bartlett S D, Tregenna B and Knight P L 2003 Phys. Rev. A 67 042305
|
[50] |
Xu Y Y, Zhou F, Chen L, Xie Y, Xue P and Feng M 2012 Chin. Phys. B 21 040304
|
[51] |
Schreiber A, Cassemiro K N, Potocek V, Gabris A, Jex I and Silberhorn C 2011 Phys. Rev. Lett. 106 180403
|
[52] |
Liu C and Petulante N 2011 Phys. Rev. A 84 012317
|
[53] |
Annabestani M, Akhtarshenas S J and Abolhassani M R 2010 Phys. Rev. A 81 032321
|
[54] |
Yin Y, Katsanos D E and Evangelou S N 2008 Phys. Rev. A 77 022302
|
[55] |
Xiong S and Yang W S 2013 J. Stat. Phys. 152 473
|
[56] |
Banerjee S, Srikanth R, Chandrashekar C M and Rungta P 2008 Phys. Rev. A 78 052316
|
[57] |
Kosik J, Buzek V and Hillery M 2006 Phys. Rev. A 74 022310
|
[58] |
Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. A 67 032304
|
[59] |
Nayak A and Vishwanath A 2000 e-print quant-ph/0010117
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|