Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(1): 010501    DOI: 10.1088/1674-1056/25/1/010501
GENERAL Prev   Next  

Quantum walks with coins undergoing different quantum noisy channels

Hao Qin(秦豪)1 and Peng Xue(薛鹏)1,2
1. Department of Physics, Southeast University, Nanjing 211189, China;
2. Beijing Institute of Mechanical and Electrical Space, Beijing 100094, China
Abstract  

Quantum walks have significantly different properties compared to classical random walks, which have potential applications in quantum computation and quantum simulation. We study Hadamard quantum walks with coins undergoing different quantum noisy channels and deduce the analytical expressions of the first two moments of position in the long-time limit. Numerical simulations have been done, the results are compared with the analytical results, and they match extremely well. We show that the variance of the position distributions of the walks grows linearly with time when enough steps are taken and the linear coefficient is affected by the strength of the quantum noisy channels.

Keywords:  quantum walks      quantum noisy channels  
Received:  08 July 2015      Revised:  12 September 2015      Accepted manuscript online: 
PACS:  05.40.Fb (Random walks and Levy flights)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11174052 and 11474049) and the CAST Innovation Fund, China.

Corresponding Authors:  Peng Xue     E-mail:  gnep.eux@gmail.com

Cite this article: 

Hao Qin(秦豪) and Peng Xue(薛鹏) Quantum walks with coins undergoing different quantum noisy channels 2016 Chin. Phys. B 25 010501

[1] Barber M 1970 Random and Restricted Walks: Theory and Applications (New York: Gordon and Breach)
[2] Berg H C 1993 Random Walks in Biology (Princeton: Princeton Univ. Press)
[3] Fama E F 1995 Financ. Anal. J. 51 75
[4] Dür W, Raussendorf R, Kendon V M and Briegel H 2002 Phys. Rev. A 66 052319
[5] Ambainis A 2003 Int. J. Quantum Inf. 1 507
[6] Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S and Spielman D A 2003 Proc. 35th ACM Symposium on Theory of Computing pp. 59-68
[7] Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
[8] Kempe J 2003 Contempo. Phys. 44 307
[9] Zhang R, Xu Y and Xue P 2015 Chin. Phys. B 24 010303
[10] Zhang R and Xue P 2014 Quant. Inf. Process. 13 1825
[11] Xue P and Sanders B C 2013 Phys. Rev. A 87 022334
[12] Xue P and Sanders B C 2012 Phys. Rev. A 85 022307
[13] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. Lett. 91 130602
[14] Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429
[15] Xue P and Sanders B C 2013 Phys. Rev. A 87 022334
[16] Zhang R, Xue P and Twamley J 2014 Phys. Rev. A 89 042317
[17] Zhan X, Qin H, Bian Z H, Li J and Xue P 2014 Phys. Rev. A 90 012331
[18] Childs A M 2009 Phys. Rev. Lett. 102 180501
[19] Childs A M, Gosset D and Webb Z 2013 Science 339 791
[20] Sension R J 2007 Nature 446 740
[21] Xue P, Sanders B C and Leibfreid D 2009 Phys. Rev. Lett. 103 183602
[22] Xue P and Sanders B C 2008 New J. Phys. 10 053025
[23] Xue P, Sanders B C, Blais A and Lalumiere K 2008 Phys. Rev. A 78 042334
[24] Xue P 2013 The Journal of Computational and Theoretical Nanoscience: Special Issue: Theoretical and Mathematical Aspects of the Discrete Time Quantum Walk 10 1
[25] Qin H and Xue P 2014 Chin. Phys. B 23 010301
[26] Genske M, Alt W, Steffen A, Werner A H, Werner R F, Meschede D and Alberti A 2013 Phys. Rev. Lett. 110 190601
[27] Zahringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
[28] Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein H, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
[29] Karski M, Forster L, Choi J M, Steffen A, Alt W, Meschede D and Widera A 2009 Science 325 174
[30] Du J, Li H, Xu X, Shi M, Wu J, Zhou X and Han R 2003 Phys. Rev. A 67 042316
[31] Ryan C A, Laforest M, Boileau J C and Laflamme R 2005 Phys. Rev. A 72 062317
[32] Xue P, Zhang R, Qin H, Zhan X, Bian Z, Li J and Sanders B C 2015 Phys. Rev. Lett. 114 140502
[33] Bian Z, Li J, Qin H, Zhan X, Zhang R, Sanders B C and Xue P 2015 Phys. Rev. Lett. 114 203602
[34] Peruzzo A, Lobino M, Matthews J C F, Matsuda N, Politi A, Poulios K, Zhou X, Lahini Y, Ismail N, Worhoff K, Bromberg Y, Silberberg Y, Thompson M G and Obrien J L 2010 Science 329 1500
[35] Schreiber A, Gabris A, Rohde P P, Laiho K, Stefanak M, Potocek V, Hamilton C, Jex I and Silberhorn C 2012 Science 336 55
[36] Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602
[37] Schreiber A, Cassemiro K N, Potocek V, Gabris A, Mosley P J, Andersson E, Jex I and Silberhorn C 2010 Phys. Rev. Lett. 104 050502
[38] Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R and Osellame R 2012 Phys. Rev. Lett. 108 010502
[39] Solntsev A S, Sukhorukov A A, Neshev D N and Kivshar Y S 2012 Phys. Rev. Lett. 108 023601
[40] Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E and White A G 2012 Nat. Commun. 3 882
[41] Crespi A, Osellame R, Ramponi R, Giovannetti V, Fazio R, Sansoni L, Nicola F D, Sciarrino F and Mataloni P 2013 Nat. Photon. 7 322
[42] Xue P, Qin H and Tang B 2014 Sci. Rep. 4 4825
[43] Xue P, Qin H, Tang B and Sanders B C 2014 New J. Phys. 16 053009
[44] Xue P and Zhang Y S 2013 Chin. Phys. B 22 070302
[45] Zhang R, Qin H, Tang B and Xue P 2013 Chin. Phys. B 22 110312
[46] Zhao J and Tong P 2015 Quant. Inf. Process. 14 2357
[47] Santos R A M, Portugal R and Fragoso M D 2014 Quant. Inf. Process. 13 559
[48] Oliveira A C, Portugal R and Donangelo R 2006 Phys. Rev. A 74 012312
[49] Sanders B C, Bartlett S D, Tregenna B and Knight P L 2003 Phys. Rev. A 67 042305
[50] Xu Y Y, Zhou F, Chen L, Xie Y, Xue P and Feng M 2012 Chin. Phys. B 21 040304
[51] Schreiber A, Cassemiro K N, Potocek V, Gabris A, Jex I and Silberhorn C 2011 Phys. Rev. Lett. 106 180403
[52] Liu C and Petulante N 2011 Phys. Rev. A 84 012317
[53] Annabestani M, Akhtarshenas S J and Abolhassani M R 2010 Phys. Rev. A 81 032321
[54] Yin Y, Katsanos D E and Evangelou S N 2008 Phys. Rev. A 77 022302
[55] Xiong S and Yang W S 2013 J. Stat. Phys. 152 473
[56] Banerjee S, Srikanth R, Chandrashekar C M and Rungta P 2008 Phys. Rev. A 78 052316
[57] Kosik J, Buzek V and Hillery M 2006 Phys. Rev. A 74 022310
[58] Brun T A, Carteret H A and Ambainis A 2003 Phys. Rev. A 67 032304
[59] Nayak A and Vishwanath A 2000 e-print quant-ph/0010117
[1] Efficient quantum private comparison protocol based on one direction discrete quantum walks on the circle
Jv-Jie Wang(王莒杰), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(5): 050308.
[2] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[3] A two-dimensional quantum walk driven by a single two-side coin
Quan Lin(林泉), Hao Qin(秦豪) Kun-Kun Wang(王坤坤), Lei Xiao(肖磊), and Peng Xue(薛鹏). Chin. Phys. B, 2020, 29(11): 110303.
[4] The entanglement of deterministic aperiodic quantum walks
Ting-Ting Liu(刘婷婷), Ya-Yun Hu(胡亚运), Jing Zhao(赵静), Ming Zhong(钟鸣), Pei-Qing Tong(童培庆). Chin. Phys. B, 2018, 27(12): 120305.
[5] A quantum walk in phase space with resonator-assisted double quantum dots
Zhi-Hao Bian(边志浩), Hao Qin(秦豪), Xiang Zhan(詹翔), Jian Li(李剑), Peng Xue(薛鹏). Chin. Phys. B, 2016, 25(2): 020307.
[6] Localization of quantum walks on finite graphs
Yang-Yi Hu(胡杨熠), Ping-Xing Chen(陈平形). Chin. Phys. B, 2016, 25(12): 120303.
[7] Implementation of a one-dimensional quantum walk in both position and phase spaces
Qin Hao (秦豪), Xue Peng (薛鹏). Chin. Phys. B, 2014, 23(1): 010301.
[8] Non-Markovian decoherent quantum walks
Xue Peng (薛鹏), Zhang Yong-Sheng (张永生). Chin. Phys. B, 2013, 22(7): 070302.
No Suggested Reading articles found!