|
|
Localization of quantum walks on finite graphs |
Yang-Yi Hu(胡杨熠), Ping-Xing Chen(陈平形) |
Department of Applied Physics, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract We analyze the localization of quantum walks on a one-dimensional finite graph using vector-distance. We first vectorize the probability distribution of a quantum walker in each node. Then we compute out the probability distribution vectors of quantum walks in infinite and finite graphs in the presence of static disorder respectively, and get the distance between these two vectors. We find that when the steps taken are small and the boundary condition is tight, the localization between the infinite and finite cases is greatly different. However, the difference is negligible when the steps taken are large or the boundary condition is loose. It means quantum walks on a one-dimensional finite graph may also suffer from localization in the presence of static disorder. Our approach and results can be generalized to analyze the localization of quantum walks in higher-dimensional cases.
|
Received: 12 May 2016
Revised: 17 August 2016
Accepted manuscript online:
|
PACS:
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174370). |
Corresponding Authors:
Ping-Xing Chen
E-mail: pxchen@nudt.edu.cn
|
Cite this article:
Yang-Yi Hu(胡杨熠), Ping-Xing Chen(陈平形) Localization of quantum walks on finite graphs 2016 Chin. Phys. B 25 120303
|
[1] |
Kempe J 2003 Contemporary Physics 44 307
|
[2] |
Rakovszky T and Asboth J K 2015 Phys. Rev. A 92 052311
|
[3] |
Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
|
[4] |
Lovett N B, Cooper S, Everitt M, Trevers M and Kendon V 2010 Phys. Rev. A 81 042330
|
[5] |
Travaglione B C and Milburn G J 2002 Phys. Rev. A 65 032310
|
[6] |
Zahringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R and Roos C F 2010 Phys. Rev. Lett. 104 100503
|
[7] |
Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T and Schaetz T 2009 Phys. Rev. Lett. 103 090504
|
[8] |
Karski M, Forster L, Choi J M, Steken A, Alt W, Meschede D and Widera A 2009 Science 325 174
|
[9] |
Genske M, Alt W, Steken A, Werner A H, Werner R F, Meschede D and Alberti A 2013 Phys. Rev. Lett. 110 190601
|
[10] |
Robens C, Alt W, Meschede D, Emary C and Alberti A 2015 Phys. Rev. X 5 011003
|
[11] |
Schreiber A, Cassemiro K N, Pototcek V, Gsabris A, Mosley P J, Andersson E, Jex I and Silberhorn C 2010 Phys. Rev. Lett. 104 050502
|
[12] |
Schreiber A, Gsabris A, Rohde P P, Laiho K, TStefatnsak M, Pototcek V, Hamilton C, Jex I and Silberhorn C 2012 Science 336 55
|
[13] |
Peruzzo A, Lobino M, Matthews J C F, Matsuda N, Politi A, Poulios K, Zhou X Q, Lahini Y, Ismail N, Wrhok K, Bromberg Y, Silberberg Y, Thompson M G and O'Brien J L 2010 Science 329 1500
|
[14] |
Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602
|
[15] |
Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R and Osellame R 2012 Phys. Rev. Lett. 108 010502
|
[16] |
Zhao Y Y, Yu N K, Kurzynski P, Xiang G Y, Li C F and Guo G C 2015 Phys. Rev. A 91 042101
|
[17] |
Ct R, Russell A, Eyler E E and Gould P L 2006 New J. Phys. 8 156
|
[18] |
Ksalmsan O, Kiss T and Foldi P 2009 Phys. Rev. B 80 035327
|
[19] |
Joye A and Merkli M 2010 J. Stat. Phys. 140 1025
|
[20] |
Ahlbrecht A, Scholz V B and Werner A H 2011 J. Math. Phys. 52 102201
|
[21] |
De Nicola F, Sansoni L, Crespi A, Ramponi R, Osellame R, Giovannetti V, Fazio R, Mataloni P and Sciarrino F 2014 Phys. Rev. A 89 032322
|
[22] |
Schreiber A, Cassemiro K N, Pototcek V, Gsabris A, Jex I and Silberhorn C 2011 Phys. Rev. Lett. 106 180403
|
[23] |
Romanelli A, Auyuanet A, Siri R, Abal G and Donangelo R 2005 Physica A 352 409
|
[24] |
Oka T, Konno N, Arita R and Aoki H 2005 Phys. Rev. Lett. 94 100602
|
[25] |
Yin Y, Katsanos D E and Evangelou S N 2008 Phys. Rev. A 77 022302
|
[26] |
Konno N 2010 Quantum Inform. Process. 9 405
|
[27] |
Chandrashekar C M 2009 "Discrete-Time Quantum Walk–Dynamics and Applications", Ph. D. Thesis, University of Waterloo
|
[28] |
Shikano Y and Katsura H 2010 Phys. Rev. E 82 031122
|
[29] |
Chandrashekar C M, Goyal S K and Banerjee S J 2012 Quantum Inform. Sci. 2 15
|
[30] |
Chandrashekar C M 2010 Phys. Rev. A 83 022320
|
[31] |
Farhi E and Gutmann S 1998 Phys. Rev. A 58 915
|
[32] |
Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687
|
[33] |
Meyer D A 1996 J. Stat. Phys. 85 551
|
[34] |
Ambainis A, Bach E, Nayak A, Vishwanath A and Watrous J 2001 Proceedings of the 33rd ACM Symposium on Theory of Computing (New York:ACM Press), p. 60
|
[35] |
Nayak A and Vishwanath A D 2001 Technical Report, No. 2000-43, arXiv:quant-ph/0010117
|
[36] |
Ambainis A 2003 Int. J. Quantum Inform. 1 507
|
[37] |
Childs A M, Cleve E, Deotto E, Farhi E, Gutmann S and Spielman D A 2003 Proceedings of the 35th ACM Symposium on Theory of Computing, (New York:ACM Press), p. 59
|
[38] |
Shenvi N, Kempe J and Whaley K B 2003 Phys. Rev. A 67 052307
|
[39] |
Ambainis A, Kempe J, and Rivosh A 2005 Proceedings of ACM-SIAM Symp. on Discrete Algorithms (SODA), (New York:AMC Press), pp. 1099-1108, ISBN:0-89871-585-7
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|