Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 097301    DOI: 10.1088/1674-1056/22/9/097301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improved interface properties of an HfO2 gate dielectric GaAs MOS device by using SiNx as an interfacial passivation layer

Zhu Shu-Yan (朱述炎)a, Xu Jing-Ping (徐静平)a, Wang Li-Sheng (汪礼胜)a b, Huang Yuan (黄苑)a
a School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
b Department of Physics Science and Technology, Wuhan University of Technology, Wuhan 430070, China
Abstract  A GaAs metal-oxide-semiconductor (MOS) capacitor with HfO2 as gate dielectric and silicon nitride (SiNx) as the interlayer (IL) is fabricated. Experimental results show that the sample with the SiNx IL has an improved capacitance-voltage characteristic, lower leakage current density (0.785×10-6 A/cm2 at Vfb+1 V) and lower interface-state density (2.9×1012 eV-1·cm-2) compared with other samples with N2- or NH3- plasma pretreatment. The influences of postdeposition annealing temperature on electrical properties are also investigated for the samples with SiNx IL. The sample annealed at 600℃ exhibits better electrical properties than that annealed at 500℃, which is attributed to the suppression of native oxides, as confirmed by XPS analyses.
Keywords:  GaAs metal-oxide-semiconductor (MOS) devices      silicon nitride      interlayer      post-deposition annealing  
Received:  11 April 2013      Revised:  15 May 2013      Accepted manuscript online: 
PACS:  73.20.Qt (Electron solids)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61176100).
Corresponding Authors:  Xu Jing-Ping     E-mail:  jpxu@mail.hust.edu.cn

Cite this article: 

Zhu Shu-Yan (朱述炎), Xu Jing-Ping (徐静平), Wang Li-Sheng (汪礼胜), Huang Yuan (黄苑) Improved interface properties of an HfO2 gate dielectric GaAs MOS device by using SiNx as an interfacial passivation layer 2013 Chin. Phys. B 22 097301

[1] Chau R, Datta S and Majumdar A 2005 Compound Semiconductor Integrated Circuit Symposium. IEEE, October 30-November 2, 2005, CA, p. xii
[2] Surdu-Bob C C, Saied S O and Sullivan J L 2001 Appl. Surf. Sci. 183 126
[3] Kazior T E, Lagowski J and Gatos H C 1983 J. Appl. Phys. 54 2533
[4] Spicer W E, Liliental Z, Weber E, Newman N and Kendelewicz T 1988 J. Vac. Sci. Technol. B 6 1245
[5] Frank M M, Wilk G D, Starodub D, Gustafsson T, Garfunkel E, Chabal Y J, Grazul J and Muller D A 2005 Appl. Phys. Lett. 86 152904
[6] Dalapati G K, Oh H J, Lee S J, Sridhara A and Wong A S 2008 Appl. Phys. Lett. 92 042120
[7] Dalapati G K, Tong Y, Loh W Y, Mun H K and Cho B J 2007 Appl. Phys. Lett. 90 183510
[8] Shahrjerdi D, Oye M M, Holmes A L and Banerjee S K 2006 Appl. Phys. Lett. 89 043501
[9] Dalapati G K, Sridhara A, Wong A S, Chia C and Chi D Z 2008 ECS Trans. 16 387
[10] Yasui K, Arayama T, Okutani S and Akahane T 2003 Appl. Surf. Sci. 212 619
[11] Hashizume T, Ikeya K, Mutoh M and Hasegawa H 1998 Appl. Surf. Sci. 123 599
[12] Muramatsu T, Miura K, Shiratori Y, Yatabe Z and Kasai S 2012 Jpn. J. Appl. Phys. 51 06FEE18
[13] Ren F, Hao Z B, Wang L, Wang L, Li H T and Luo Y 2010 Chin. Phys. B 19 017306
[14] Yang L, Hu G Z, Hao Y, Ma X H, Quan S, Yang L Y and Jiang S G 2010 Chin. Phys. B 19 047301
[15] Dalapati G K, Sridhara A, Wong A S, Chia C K and Lee S J 2007 Appl. Phys. Lett. 91 242101
[16] Terman L M 1962 Solid-State Electron. 5 285
[17] Losurdo M, Capezzuto P, Bruno G, Perna G and Capozzi V 2002 Appl. Phys. Lett. 81 16
[18] Li J, Zhang X W, Zhang L, Zhang H, Jiang X Y, Zhu W Q and Zhang Z L 2010 Semicond. Sci. Technol. 25 045027
[19] Hideki H 2000 Thin Solid Films 367 58
[20] Takeyoshi S,Yoshitaka O and Mintsuo K 1992 J. Appl. Phys. 31 713
[21] Kubota T, Nakato Y, Yoneda K and Kobayashi H 1997 Phys. Rev. B 56 7428
[22] Hong S H, Park T J, Kim J H, Kim S K, Cho M J, Won J Y, Jeong R J and Hwang C S 2006 ECS Trans. 1 257
[1] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[2] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[3] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[4] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[5] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[6] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[7] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[8] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[9] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
[10] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[11] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[12] Van der Waals interlayer potential of graphitic structures: From Lennard-Jones to Kolmogorov-Crespy and Lebedeva models
Zbigniew Koziol, Grzegorz Gawlik, Jacek Jagielski. Chin. Phys. B, 2019, 28(9): 096101.
[13] An overview of progress in Mg-based hydrogen storage films
Lyu Jinzhe, Andrey M Lider, Viktor N Kudiiarov. Chin. Phys. B, 2019, 28(9): 098801.
[14] Fullerene-based electrode interlayers for bandgap tunable organometal perovskite metal-semiconductor-metal photodetectors
Wen Luo(罗文), Li-Zhi Yan(闫立志), Rong Liu(刘荣), Tao-Yu Zou(邹涛隅), Hang Zhou(周航). Chin. Phys. B, 2019, 28(4): 047804.
[15] Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices
Hui Zhang(张慧), Jing Zhang(张静), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Hai-Lin Huang(黄海林), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2019, 28(3): 037501.
No Suggested Reading articles found!