Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 097302    DOI: 10.1088/1674-1056/22/9/097302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions

Zheng Liu (郑柳)a, Zhang Feng (张峰)a, Liu Sheng-Bei (刘胜北)a, Dong Lin (董林)a, Liu Xing-Fang (刘兴昉)a, Fan Zhong-Chao (樊中朝)b, Liu Bin (刘斌)a, Yan Guo-Guo (闫果果)a, Wang Lei (王雷)a, Zhao Wan-Shun (赵万顺)a, Sun Guo-Sheng (孙国胜)a, He Zhi (何志)a, Yang Fu-Hua (杨富华)b
a Key Laboratory of Semiconductor Material Sciences, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm2 with a total active area of 2.46×10-3 cm2. Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250℃ in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9×10-5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure.
Keywords:  4H-SiC      junction barrier Schottky (JBS) diode      high-temperature annealed resistive termination extension (HARTE)  
Received:  13 December 2012      Revised:  13 March 2013      Accepted manuscript online: 
PACS:  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.40.Sx (Metal-semiconductor-metal structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51102225), the Natural Science Foundation of Beijing City, China (Grant No. 4132076), and the Youth Innovation Promotion Association, Chinese Academy of Sciences.
Corresponding Authors:  Zhang Feng     E-mail:  fzhang@semi.ac.cn

Cite this article: 

Zheng Liu (郑柳), Zhang Feng (张峰), Liu Sheng-Bei (刘胜北), Dong Lin (董林), Liu Xing-Fang (刘兴昉), Fan Zhong-Chao (樊中朝), Liu Bin (刘斌), Yan Guo-Guo (闫果果), Wang Lei (王雷), Zhao Wan-Shun (赵万顺), Sun Guo-Sheng (孙国胜), He Zhi (何志), Yang Fu-Hua (杨富华) High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions 2013 Chin. Phys. B 22 097302

[1] Sun G S, Liu X F, Wang L, Zhao W S, Yang T, Wu H L, Yan G G, Zhao Y M, Ning J, Zeng Y P and Li J M 2010 Chin. Phys. B 19 088101
[2] Sun G S, Liu X F, Wu H L, Yan G G, Dong L, Zheng L, Zhao W S, Wang L, Zeng Y P, Li X G and Wang Z G 2011 Chin. Phys. B 20 033301
[3] Dong L, Sun G S, Zheng L, Liu X F, Zhang F, Yan G G, Zhao W S, Wang L, Li X G and Wang Z G 2012 Chin. Phys. B 21 047802
[4] Song Q W, Zhang Y M, Zhang Y M and Tang X Y 2012 Diam. Relat. Mater. 22 42
[5] Chang S C, Wang S J, Uang K M and Liou B W 2005 Solid State Electron. 49 437
[6] Mahajan A and Skromme B J 2005 Solid State Electron. 49 945
[7] Li X, Tone K, Fursin L, Zhao J H, Burke T, Alexandrov P, Pan M and Weiner M 2001 Electron. Lett. 37 392
[8] Itoh A, Kimoto T and Matsunami H 1996 IEEE Electron Dev. Lett. 17 139
[9] Alok D, Baliga B J and McLarty P K 1994 IEEE Electron Dev. Lett. 15 394
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[4] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[5] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[6] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[7] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
[8] Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses
Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(9): 098503.
[9] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[10] Ultra-high voltage 4H-SiC gate turn-off thyristor forlow switching time
Qing Liu(刘青), Hong-Bin Pu(蒲红斌), Xi Wang(王曦). Chin. Phys. B, 2019, 28(12): 127201.
[11] Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure
Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门). Chin. Phys. B, 2019, 28(11): 117303.
[12] Defects and electrical properties in Al-implanted 4H-SiC after activation annealing
Yi-Dan Tang(汤益丹), Xin-Yu Liu(刘新宇), Zheng-Dong Zhou(周正东), Yun Bai(白云), Cheng-Zhan Li(李诚瞻). Chin. Phys. B, 2019, 28(10): 106101.
[13] Simulation of SiC radiation detector degradation
Hai-Li Huang(黄海栗), Xiao-Yan Tang(汤晓燕), Hui Guo(郭辉), Yi-Men Zhang(张义门), Yu-Tian Wang(王雨田), Yu-Ming Zhang(张玉明). Chin. Phys. B, 2019, 28(1): 010701.
[14] Photoluminescence in fluorescent 4H-SiC single crystal adjusted by B, Al, and N ternary dopants
Shi-Yi Zhuo(卓世异), Xue-Chao Liu(刘学超), Wei Huang(黄维), Hai-Kuan Kong(孔海宽), Jun Xin(忻隽), Er-Wei Shi(施尔畏). Chin. Phys. B, 2019, 28(1): 017101.
[15] Passivation of carbon dimer defects in amorphous SiO2/4H-SiC (0001) interface: A first-principles study
Yi-Jie Zhang(张轶杰), Zhi-Peng Yin(尹志鹏), Yan Su(苏艳), De-Jun Wang(王德君). Chin. Phys. B, 2018, 27(4): 047103.
No Suggested Reading articles found!