Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 094215    DOI: 10.1088/1674-1056/22/9/094215
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

All-optical modulator based on a ferrofluid core metal cladding waveguide chip

Han Qing-Bang (韩庆邦)a, Yin Cheng (殷澄)a, Li Jian (李建)a, Tang Yi-Bin (汤一彬)a, Shan Ming-Lei (单鸣雷)a, Cao Zhuang-Qi (曹庄琪)b
a Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China;
b Department of Physics, State Key Lab of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  We propose a novel optical intensity modulator based on the combination of a symmetrical metal cladding optical waveguide (SMCW) and ferrofluid, where the ferrofluid is sealed in the waveguide to act as a guiding layer. The light matter interaction in the ferrofluid film leads to the formation of a regular nanoparticle pattern, which changes the phase match condition of the ultrahigh order modes in return. When two lasers are incident on the same spot of the waveguide chip, experiments illustrate all-optical modulation of one laser beam by adjusting the intensity of the other laser. A possible theoretical explanation may be due to the optical trapping and Soret effect since the phenomenon is considerable only when the control laser is effectively coupled into the waveguide.
Keywords:  symmetrical metal cladding waveguide chip      ultrahigh order modes      ferrofluids      all-optical devices  
Received:  09 November 2012      Revised:  01 April 2013      Accepted manuscript online: 
PACS:  42.82.Et (Waveguides, couplers, and arrays)  
  47.65.Cb (Magnetic fluids and ferrofluids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274091 and 11274092) and the Fundamental Research Funds for the Central Universities of Hohai University, China (Grant No. 2011B11014).
Corresponding Authors:  Yin Cheng     E-mail:  cyin.phys@gmail.com

Cite this article: 

Han Qing-Bang (韩庆邦), Yin Cheng (殷澄), Li Jian (李建), Tang Yi-Bin (汤一彬), Shan Ming-Lei (单鸣雷), Cao Zhuang-Qi (曹庄琪) All-optical modulator based on a ferrofluid core metal cladding waveguide chip 2013 Chin. Phys. B 22 094215

[1] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[3] Yu G X and Cui T J 2008 Chin. Phys. B 17 164
[4] Zheng G G, Jiang J L, Xian F L, Qiang H X, Wu H and Li X Y 2011 Chin. Phys. B 20 094201
[5] Li H G, Cao Z Q, Lu H F and Shen Q S 2003 Appl. Phys. Lett. 83 2757
[6] Homola J 2003 Anal. Bioanal. Chem. 377 528
[7] Lu H F, Cao Z Q, Li H G and Shen Q S 2003 Appl. Phys. Lett. 85 4579
[8] WangY, Li H G, Cao Z Q, Yu T Y, Shen Q S and He Y 2008 Appl. Phys. Lett. 92 061117
[9] Hao J, Li H G, Yin C and Cao Z Q 2010 J. Opt. Soc. Am. B 27 1305
[10] Yuan W, Yin C, Li H G, Xiao P P and Cao Z Q 2011 J. Opt. Soc. Am. B 28 968
[11] Li J, Liu X D, Lin Y Q, Bai L, Li Q, Chen X M and Wang A R 2007 Appl. Phys. Lett. 91 253108
[12] Horng H, Chieh J, Chao Y, Yang S, Hong C Y and Yang H C 2005 Opt. Lett. 30 543
[13] Deng H, Liu J, Zhao W, Zhang W, Lin X, Sun T, Dai Q F, Wu L J, Lan S and Gopal A V 2008 Appl. Phys. Lett. 92 233103
[14] Bai X, Pu S, Wang L, Wang X, Yu G J and Ji H Z 2011 Chin. Phys. B 20 107501
[15] Nair S, Thomas J, Sandeep C, Anantharaman M R and Philip R 2008 Appl. Phys. Lett. 92 171908
[16] Ji H, Pu S, Wang X and Yu G 2012 Opt. Commun. 285 4435
[17] Yuan W, Yin C, Xiao P P, Wang X P, Sun J J, Sang M H, Chen X F and Cao Z Q 2011 Microfluid. Nanofluid. 11 781
[18] Tabiryan N and Luo W L 1998 Phys. Rev. E 57 4431
[1] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[2] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[3] Improving the spectral purity of single photons by a single-interferometer-coupled microring
Yang Wang(王洋), Pingyu Zhu(朱枰谕), Shichuan Xue(薛诗川), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), Xuejun Yang(杨学军), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(3): 034210.
[4] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
[5] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[6] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[7] Tunable characteristic of phase-locked quantum cascade laser arrays
Zeng-Hui Gu(顾增辉), Jin-Chuan Zhang(张锦川), Huan Wang(王欢), Peng-Chang Yang(杨鹏昌), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Jun-Qi Liu(刘俊岐), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Feng-Qi Liu(刘峰奇), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(10): 104201.
[8] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[9] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[10] Polarization-independent silicon photonic grating coupler for large spatial light spots
Lijun Yang(杨丽君), Xiaoyan Hu(胡小燕), Bin Li(李斌), and Jing Cao(曹静). Chin. Phys. B, 2021, 30(2): 024206.
[11] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[12] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[13] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[14] Unitary transformation of general nonoverlapping-image multimode interference couplers with any input and output ports
Ze-Zheng Li(李泽正), Wei-Hua Han(韩伟华), Zhi-Yong Li(李智勇). Chin. Phys. B, 2020, 29(1): 014206.
[15] Extraordinary transmission and reflection in PT-symmetric two-segment-connected triangular optical waveguide networks with perfect and broken integer waveguide length ratios
Jia-Ye Wu(吴嘉野), Xu-Hang Wu(吴栩航), Xiang-Bo Yang(杨湘波), Hai-Ying Li(李海盈). Chin. Phys. B, 2019, 28(10): 104208.
No Suggested Reading articles found!