ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Reflective graphene oxide absorber for passively mode-locked laser operating at nearly 1 μm |
Yang Ji-Min (杨济民)a, Yang Qi (杨琦)a, Liu Jie (刘杰)a b, Wang Yong-Gang (王勇刚)c, Yuen H. Tsangc |
a College of Physics and Electronics, Shandong Normal University, Jinan 250014, China; b State Key laboratory of Crystal Material, Shandong University, Jinan 250100, China; c Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hong Kong, China |
|
|
Abstract A low cost and simply fabricated reflective graphene oxide is successfully made. By using this absorber, as well as an end reflector, we obtain a passively mode-locked Yb:LuYSiO5 laser operating at nearly 1 μm. When the pump power is increased up to 5.73 W, stable mode locking is achieved. The central wavelength of the laser spectrum is 1043.2 nm with a pulse duration of 5.0 ps. When the pump power reaches 8.16 W, dual-wavelength mode locking laser pulses at 1036.3 nm and 1043.5 nm are simultaneously detected.
|
Received: 11 December 2012
Revised: 17 January 2013
Accepted manuscript online:
|
PACS:
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
42.70.Hj
|
(Laser materials)
|
|
Fund: Project support by the National Natural Science Foundation of China (Grant No. 61078032), the Science and Technology Projects Plan of Jinan City, China (Grant No. 201004007), the State Key Laboratory of Crystal Materials, China (Grant No. KF1201), the Research Grants Council of Hong Kong, China (Grant No. GRF 526511 PolyU code: B-Q26E), and the Hong Kong Polytechnic University, China (Grant No. G-YJ20). |
Corresponding Authors:
Yang Ji-Min, Yuen H. Tsang
E-mail: jmyang@sdnu.edu.cn; Yuen.Tsang@polyu.edu.hk
|
Cite this article:
Yang Ji-Min (杨济民), Yang Qi (杨琦), Liu Jie (刘杰), Wang Yong-Gang (王勇刚), Yuen H. Tsang Reflective graphene oxide absorber for passively mode-locked laser operating at nearly 1 μm 2013 Chin. Phys. B 22 094210
|
[1] |
Keller U 2003 Nature 424 831
|
[2] |
Keller U, Weingarten K J, Kärtner F X, Kopf D, Braun B, Jung I D, Fluck R, Hönninger C, Matuschek N and Aus der Au J 1996 IEEE J. Sel. Top. Quantum Electron 2 435
|
[3] |
Zhang C, Wei Z Y, Zhang L, Zhang C Y and Zhang Z G 2006 Chin. Phys. 15 2606
|
[4] |
Wei D T, Tang D Y, Xu X D, Zhang J, Xu C W, Xu F, Zheng L H, Su L B and Jun X 2010 Opt. Express 18 16739
|
[5] |
Zhou B B, Wei Z Y, Zhang Y D, Zhong X, Teng H, Zheng L H, Su L B and Jun X 2009 Opt. Lett. 34 31
|
[6] |
Wang C L, Wang Y G, Ma X Y, Liu Y, Sun L Q, Tian Q, Zang Z G and Wang Q Y 2006 Chin. Phys. Lett. 23 616
|
[7] |
Jia Y L, Ling W J, Wei Z Y, Wang Y G and Ma X Y 2005 Chin. Phys. Lett. 22 2575
|
[8] |
Cao S Y, Zhang Z G, Zhu Y, Chai L and Wang Q Y 2009 Acta Phys. Sin. 58 6269 (in Chinese)
|
[9] |
Set S Y, Yaguchi H, Tanaka Y and Jablonski M 2004 J. Lightw. Technol. 22 51
|
[10] |
Qu Z S, Wang Y G, Liu J, Zheng L H, Su L B and Xu J 2012 Chin. Phys. B 21 064211
|
[11] |
Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano 4 803
|
[12] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[13] |
Zhang Y, Tan Y, Stormer H L and Kim P 2005 Nature 438 201
|
[14] |
Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
|
[15] |
Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F, and Spencer M G 2008 Appl. Phys. Lett. 92 042116
|
[16] |
Tan W D, Su C Y, Knize R J, Xie G Q, Li L J and Tang D Y 2010 Appl. Phys. Lett. 96 031106
|
[17] |
Xu J L, Li X L, Wu Y Z, Hao X P, He J L and Yang K J 2011 Opt. Lett. 36 1948
|
[18] |
Liu J, Wang Y G, Qu Z S, Zheng L H, Su L B and Xu J 2012 Laser Phys. Lett. 9 15
|
[19] |
Wang Y G, Chen H R, Wen X M, Hsieh W F and Tang J 2011 Nanotechnology 22 455203
|
[20] |
Zhang L, Wang Y G, Yu H J, Zhang S B, Hou W, Lin X C and Li J M 2011 Laser Phys. 21 2072
|
[21] |
Kitaeva G K 2008 Laser Phys. Lett. 5 559
|
[22] |
Miyamoto K, Minamide H, Fujiwara M, Hashimoto H and Ito H 2008 Opt. Lett. 33 252
|
[23] |
Zhang Z and Yagi T 1993 Opt. Lett. 18 2126
|
[24] |
Xie G Q, Tang D Y, Luo H, Zhang H J, Yu H H, Wang J Y, Tao X T, Jiang M H and Qian L J 2008 Opt. Lett. 33 1872
|
[25] |
Agnesi A, Pirzio F, Reali G, Arcangeli A, Tonelli M, Jia Z and Tao X 2010 Appl. Phys. B 99 135
|
[26] |
Yoshioka H, Nakamura S, Ogawa T and Wada S 2010 Opt. Express 18 1479
|
[27] |
Cong Z H, Tang D Y, Tan W D, Zhang J, Xu C W, Luo D W, Xu X D, Li D Z, Xu J, Zhang X Y and Wang Q P 2011 Opt. Express 19 3984
|
[28] |
Liu J, Wang W W, Liu C C, Fan X W, Zheng L H, Su L B and Xu J 2010 Laser Phys. Lett. 7 1043
|
[29] |
Liu J, Yang J M, Wang W W, Zheng L H, Su L B and Xu J 2011 Laser Phys. 21 659
|
[30] |
Yang Q, Liu D H, Liu J, Wang Y G, Tang J, Zheng L H, Su L B and Xu J 2011 Opt. Eng. 50 114202
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|