Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 094102    DOI: 10.1088/1674-1056/22/9/094102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Tunability of graded negative index-based photonic crystal lenses for fine focusing

Jin Lei (晋蕾), Zhu Qing-Yi (朱清溢), Fu Yong-Qi (付永启)
School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Graded negative refractive index-based photonic crystal (PC) lenses are designed by gradually modifying the sizes of air holes along the transverse direction for focusing the incident plane wave. To study the tunability of the graded negative index-based PC, we introduce filling factor A, gradually tune the filling factor, and use the finite-difference and time-domain (FDTD) algorithm for numerical calculation. Our calculation results indicate that the focal length and the spot size increase with A increasing. For the same A value, the focal length of a PC with elliptical air holes is the longest, and those of PC with square and rectangular air holes are the shortest. Moreover, when the focal length is greater than 1 μm, the focal parameters of the PC are highly insensitive to the variation of A. When the focal length is less than 1 μm, the PC lenses have higher transmittances and all well focus with a beam spot size breaking the diffraction limit. This feature possibly makes the graded negative index-based PC lenses have some new applications in optoelectronic systems.
Keywords:  photonic crystals      graded negative index      focusing      flat lenses  
Received:  17 September 2012      Revised:  31 January 2013      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.70.Qs (Photonic bandgap materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11079014 and 61077010).
Corresponding Authors:  Fu Yong-Qi     E-mail:  yqfu@uestc.edu.cn

Cite this article: 

Jin Lei (晋蕾), Zhu Qing-Yi (朱清溢), Fu Yong-Qi (付永启) Tunability of graded negative index-based photonic crystal lenses for fine focusing 2013 Chin. Phys. B 22 094102

[1] Chien H T and Chen C C 2006 Opt. Express 14 10759
[2] Kurt H, Colak E, Cakmak O, Caglayan H and Ozbay E 2008 Appl. Phys. Lett. 93 171108
[3] Vasic B and Gajic R 2011 J. Appl. Phys. 5 053103
[4] Kurt H and Citrin D S 2007 Opt. Express 15 1240
[5] Schonbrun E, Wu Q, Park W, Yamashita T, Summers C J, Abashin M and Fainman Y 2007 Appl. Phys. Lett. 90 041113
[6] Shi P, Huang K and Li Y P 2011 J. Opt. Soc. Am. B: Opt. Phys. 28 2098
[7] Ren K and Ren X B 2012 Chinese Science Bulletin 57 1241
[8] Zhu Q Y, Fu Y Q, Hu D Q and Zhang Z M 2012 Chin. Phy. B 21 064220
[9] Wang H W and Chen L W 2010 J. Opt. Soc. Am. B: Opt. Phys. 28 2098
[10] Centeno E and Cassagne D 2005 Opt. Lett. 30 2278
[11] Roux F S and DeLeon I 2006 Phys. Rev. B 74 113103
[12] Lu M Q, Juluri B K, Sz-Chin Steven Lin S S, Kiraly B and Gao T Y 2010 J. Appl. Phys. 108 10
[13] Ren K and Ren X B 2011 Appl. Opt. 50 2152
[14] Liu M L, Yun M J, Xia F and Liang J 2012 Proc. SPIE 8497 849717
[15] Casse B D F, Lu W T, Huang Y J and Sridhar S 2008 Appl. Phys. Lett. 93 053111
[16] Centeno E, Cassagne D and Albert J P 2006 Phys. Rev. B 73 235119
[17] Luo C Y, Johnson S G and Joannopoulos J D 2002 Phys. Rev. B 65 201104
[18] Sun J, Shen Y F, Chen J, Wang L G, Sun L L, Wang J, Han K and Tang G 2010 Photonics and Nanostructures-Fundamentals and Applications p. 163
[19] Wu Q, Gibbons J M and Park W 2008 Opt. Express 16941
[20] Zhu Q Y, Fu Y Q, Zhang Z M, Xu Z J and Yu W X 2012 Plasmonics 7
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[3] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[4] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[5] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[6] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[7] Three-dimensional spatial multi-point uniform light focusing through scattering media based on feedback wavefront shaping
Fan Yang(杨帆), Yang Zhao(赵杨), Chengchao Xiang(向成超), Qi Feng(冯祺), and Yingchun Ding(丁迎春). Chin. Phys. B, 2021, 30(4): 044207.
[8] Dual-function beam splitter of high contrast gratings
Wen-Jing Fang(房文敬), Xin-Ye Fan(范鑫烨), Hui-Juan Niu(牛慧娟), Xia Zhang (张霞), Heng-Ying Xu(许恒迎), and Cheng-Lin Bai(白成林). Chin. Phys. B, 2021, 30(4): 044205.
[9] Propagation properties and radiation force of circular Airy Gaussian vortex beams in strongly nonlocal nonlinear medium
Xinyu Liu(刘欣宇), Chao Sun(孙超), and Dongmei Deng(邓冬梅). Chin. Phys. B, 2021, 30(2): 024202.
[10] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[11] Three-Airy autofocusing beams
Xiao-Hong Zhang(张小红), Fei-Li Wang(王飞利), Lu-Yang Bai(白露阳), Ci-Bo Lou(楼慈波), Yi Liang(梁毅). Chin. Phys. B, 2020, 29(6): 064204.
[12] Far-field vector-diffraction of off-axis parabolic mirror under oblique incidence
Xia-Hui Zeng(曾夏辉), Xi-Yao Chen(陈曦曜). Chin. Phys. B, 2020, 29(3): 034202.
[13] Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2020, 29(3): 034304.
[14] Linear and nonlinear propagation characteristics of multi-Gaussian laser beams
Naveen Gupta and Sandeep Kumar. Chin. Phys. B, 2020, 29(11): 114210.
[15] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
No Suggested Reading articles found!