Abstract We investigate how three-body interactions affect the elementary excitations and dynamic structure factor of a Bose-Einstein condensate trapped in a one-dimensional optical lattice. To this end, we numerically solve the Gross-Pitaevskii equation and then the corresponding Bogoliubov equations. Our results show that three-body interactions can change both the Bogoliubov band structure and the dynamical structure factor dramatically, especially in the case of the two-body interaction being relatively small. Furthermore, when the optical lattice is strong enough, the analytical results, combined with the sum-rule approach, help us to understand that: the effects of three-body interactions on the static structure factor can be significantly amplified by an optical lattice. Our predictions should be observable within the current Bragg spectroscopy experiment.
Qi Wei (漆伟), Liang Zhao-Xin (梁兆新), Zhang Zhi-Dong (张志东) Effects of three-body interaction on dynamic and static structure factors of an optically-trapped Bose gas 2013 Chin. Phys. B 22 090314
[1]
Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
[2]
Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[3]
Anderson B P and Kasevich M A 1998 Science 282 1686
[4]
Cristiani M, Morsch O, Miller J H, Ciampini D and Arimondo E 2002 Phys. Rev. A 65 063612
[5]
Morsch O, Muller J H, Cristinani M, Ciampini D and Arimondo E 2001 Phys. Rev. Lett. 87 140402
[6]
Krämer M, Menotti C, Pitaevskii L and S. Stringari 2003 Eur. Phys. J. D 27 247
[7]
Wu B and Niu Q 2003 New J. Phys. 5 104
[8]
Tie L and Xue J K 2011 Chin. Phys. B 20 120311
[9]
Zhang A X and Xue J K 2007 Phys. Rev. A 75 013624
[10]
Wu B and Niu Q 2000 Phys. Rev. A 61 023402
[11]
Wu B, Diener R B and Niu Q 2002 Phys. Rev. A 65 025601
[12]
Diakonov D, Jensen L M, Pethick C J and Smith H 2002 Phys. Rev. A 66 013604
[13]
Qi W and Xue J K 2010 Phys. Rev. A 81 013608
[14]
Louis P J Y, Ostrovskaya E A, Savage C M and Kivshar Y S 2003 Phys. Rev. A 67 013602
[15]
Zhang Y P and Wu B 2009 Phys. Rev. Lett. 102 093905
[16]
Greiner M, Mandel O, Esslinger T, Hansch T W and Bloch I 2002 Nature 415 39
[17]
Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[18]
Shobu T, Yamaoka H, Imai H, Morinaga A and Yamashita M 2011 Phys. Rev. A 84 033626
[19]
Wu T T 1959 Phys. Rev. 115 1390
[20]
Braaten E and Nieto A 1999 Eur. Phys. J. B 11 143
[21]
Braaten E, Hammer H W and Hermans S 2001 Phys. Rev. A 63 063609
[22]
Köhler T 2002 Phys. Rev. Lett. 89 210404
[23]
Büchler H P, Micheli A and Zoller P 2007 Nature Phys. 3 726
[24]
Johnson P R, Tiesinga E, Porto J V and Williams C J 2009 New J. Phys. 11 093022
[25]
Daley A J, Taylor J M, Diehl S, Baranov M and Zoller P 2009 Phys. Rev. Lett. 102 040402
[26]
Roncaglia M, Rizzi M and Cirac J I 2010 Phys. Rev. Lett. 104 096803
[27]
Diehl S, Baranov M, Delay A J and Zoller P 2010 Phys. Rev. Lett. 104 165301
[28]
Diehl S, Baranov M, Delay A J and Zoller P 2010 Phys. Rev. B 82 064509
[29]
Diehl S, Baranov M, Delay A J and Zoller P 2010 Phys. Rev. B 82 064510
[30]
Syassen N, Bauer D M, Lettner M, Volz T, Dietze D, Garcia-Rípoll J J, Cirac J I, Rempe G and Dürr S 2008 Science 320 1329
[31]
Roberts J L, Claussen N R, Cornish S L, Donley E A, Cornell E A and Wieman C E 2001 Phys. Rev. Lett. 86 4211
[32]
Li H C, Chen H J and Xue J K 2010 Chin. Phys. Lett. 27 030304
[33]
Wu L and Zhang J F 2007 Chin. Phys. Lett. 24 1471
[34]
Peng P and Li G Q 2009 Chin. Phys. B 18 3221
[35]
Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 82 4569
[36]
Stamper-Kurn D M, Chikkatur A P, Görlitz A, Inouye S, Gupta S, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 83 2876
[37]
Roth R and Burnett K 2004 J. Phys. B 37 3893
[38]
Hu H and Liu X J 2012 Phys. Rev. A 85 023612
[39]
Ghosh T K 2007 Phys. Rev. A 76 033602
[40]
Menotti C, Krämer M, Pitaevskii L and Stringari S 2003 Phys. Rev. A 67 053609
[41]
Fabbri N, Clément D, Fallani L, Fort C, Modugno M, van der Stam K M R and Inguscio M 2009 Phys. Rev. A 79 043623
[42]
Bulgac A 2002 Phys. Rev. Lett. 89 050402
[43]
Kohler T 2002 Phys. Rev. Lett. 89 210404
[44]
Leanhardt A E, Chikkatur A P, Kielpinski D, Shin Y, Gustavson T L, Ketterle W and Pritchard D E 2002 Phys. Rev. Lett. 89 040401
[45]
Pieri P and Strinati G C 2002 Phys. Rev. Lett. 91 030401
[46]
Tolra B L, Hara K M O, Huckans J H, Philips W D, Rolston S L and Porto J V 2004 Phys. Rev. Lett. 92 190401
[47]
Fort C, Cataliotti F S, Fallani L, Ferlaino F, Maddaloni P and Inguscio M 2003 Phys. Rev. Lett. 90 140405
[48]
Zhang A X and Xue J K 2008 Phys. Lett. A 372 1147
[49]
Krämer M, Menotti C, Pitaevskii L and Stringari S 2002 Phys. Rev. Lett. 88 180404
[50]
Ernst P T, Götze S, Krauser J D, Pyka K, Lühmann D S, Pfannkuche D and Sengstock K 2010 Nature Phys. 6 56
Effective sideband cooling in an ytterbium optical lattice clock Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4]
Superfluid to Mott-insulator transition in a one-dimensional optical lattice Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.