Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090314    DOI: 10.1088/1674-1056/22/9/090314
GENERAL Prev   Next  

Effects of three-body interaction on dynamic and static structure factors of an optically-trapped Bose gas

Qi Wei (漆伟), Liang Zhao-Xin (梁兆新), Zhang Zhi-Dong (张志东)
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  We investigate how three-body interactions affect the elementary excitations and dynamic structure factor of a Bose-Einstein condensate trapped in a one-dimensional optical lattice. To this end, we numerically solve the Gross-Pitaevskii equation and then the corresponding Bogoliubov equations. Our results show that three-body interactions can change both the Bogoliubov band structure and the dynamical structure factor dramatically, especially in the case of the two-body interaction being relatively small. Furthermore, when the optical lattice is strong enough, the analytical results, combined with the sum-rule approach, help us to understand that: the effects of three-body interactions on the static structure factor can be significantly amplified by an optical lattice. Our predictions should be observable within the current Bragg spectroscopy experiment.
Keywords:  dynamic structure factor      three-body interaction      optical lattice  
Received:  03 April 2013      Revised:  18 April 2013      Accepted manuscript online: 
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  67.40.Db  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004200 and 11274315).
Corresponding Authors:  Qi Wei     E-mail:  wqi11b@imr.ac.cn

Cite this article: 

Qi Wei (漆伟), Liang Zhao-Xin (梁兆新), Zhang Zhi-Dong (张志东) Effects of three-body interaction on dynamic and static structure factors of an optically-trapped Bose gas 2013 Chin. Phys. B 22 090314

[1] Morsch O and Oberthaler M 2006 Rev. Mod. Phys. 78 179
[2] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[3] Anderson B P and Kasevich M A 1998 Science 282 1686
[4] Cristiani M, Morsch O, Miller J H, Ciampini D and Arimondo E 2002 Phys. Rev. A 65 063612
[5] Morsch O, Muller J H, Cristinani M, Ciampini D and Arimondo E 2001 Phys. Rev. Lett. 87 140402
[6] Krämer M, Menotti C, Pitaevskii L and S. Stringari 2003 Eur. Phys. J. D 27 247
[7] Wu B and Niu Q 2003 New J. Phys. 5 104
[8] Tie L and Xue J K 2011 Chin. Phys. B 20 120311
[9] Zhang A X and Xue J K 2007 Phys. Rev. A 75 013624
[10] Wu B and Niu Q 2000 Phys. Rev. A 61 023402
[11] Wu B, Diener R B and Niu Q 2002 Phys. Rev. A 65 025601
[12] Diakonov D, Jensen L M, Pethick C J and Smith H 2002 Phys. Rev. A 66 013604
[13] Qi W and Xue J K 2010 Phys. Rev. A 81 013608
[14] Louis P J Y, Ostrovskaya E A, Savage C M and Kivshar Y S 2003 Phys. Rev. A 67 013602
[15] Zhang Y P and Wu B 2009 Phys. Rev. Lett. 102 093905
[16] Greiner M, Mandel O, Esslinger T, Hansch T W and Bloch I 2002 Nature 415 39
[17] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[18] Shobu T, Yamaoka H, Imai H, Morinaga A and Yamashita M 2011 Phys. Rev. A 84 033626
[19] Wu T T 1959 Phys. Rev. 115 1390
[20] Braaten E and Nieto A 1999 Eur. Phys. J. B 11 143
[21] Braaten E, Hammer H W and Hermans S 2001 Phys. Rev. A 63 063609
[22] Köhler T 2002 Phys. Rev. Lett. 89 210404
[23] Büchler H P, Micheli A and Zoller P 2007 Nature Phys. 3 726
[24] Johnson P R, Tiesinga E, Porto J V and Williams C J 2009 New J. Phys. 11 093022
[25] Daley A J, Taylor J M, Diehl S, Baranov M and Zoller P 2009 Phys. Rev. Lett. 102 040402
[26] Roncaglia M, Rizzi M and Cirac J I 2010 Phys. Rev. Lett. 104 096803
[27] Diehl S, Baranov M, Delay A J and Zoller P 2010 Phys. Rev. Lett. 104 165301
[28] Diehl S, Baranov M, Delay A J and Zoller P 2010 Phys. Rev. B 82 064509
[29] Diehl S, Baranov M, Delay A J and Zoller P 2010 Phys. Rev. B 82 064510
[30] Syassen N, Bauer D M, Lettner M, Volz T, Dietze D, Garcia-Rípoll J J, Cirac J I, Rempe G and Dürr S 2008 Science 320 1329
[31] Roberts J L, Claussen N R, Cornish S L, Donley E A, Cornell E A and Wieman C E 2001 Phys. Rev. Lett. 86 4211
[32] Li H C, Chen H J and Xue J K 2010 Chin. Phys. Lett. 27 030304
[33] Wu L and Zhang J F 2007 Chin. Phys. Lett. 24 1471
[34] Peng P and Li G Q 2009 Chin. Phys. B 18 3221
[35] Stenger J, Inouye S, Chikkatur A P, Stamper-Kurn D M, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 82 4569
[36] Stamper-Kurn D M, Chikkatur A P, Görlitz A, Inouye S, Gupta S, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 83 2876
[37] Roth R and Burnett K 2004 J. Phys. B 37 3893
[38] Hu H and Liu X J 2012 Phys. Rev. A 85 023612
[39] Ghosh T K 2007 Phys. Rev. A 76 033602
[40] Menotti C, Krämer M, Pitaevskii L and Stringari S 2003 Phys. Rev. A 67 053609
[41] Fabbri N, Clément D, Fallani L, Fort C, Modugno M, van der Stam K M R and Inguscio M 2009 Phys. Rev. A 79 043623
[42] Bulgac A 2002 Phys. Rev. Lett. 89 050402
[43] Kohler T 2002 Phys. Rev. Lett. 89 210404
[44] Leanhardt A E, Chikkatur A P, Kielpinski D, Shin Y, Gustavson T L, Ketterle W and Pritchard D E 2002 Phys. Rev. Lett. 89 040401
[45] Pieri P and Strinati G C 2002 Phys. Rev. Lett. 91 030401
[46] Tolra B L, Hara K M O, Huckans J H, Philips W D, Rolston S L and Porto J V 2004 Phys. Rev. Lett. 92 190401
[47] Fort C, Cataliotti F S, Fallani L, Ferlaino F, Maddaloni P and Inguscio M 2003 Phys. Rev. Lett. 90 140405
[48] Zhang A X and Xue J K 2008 Phys. Lett. A 372 1147
[49] Krämer M, Menotti C, Pitaevskii L and Stringari S 2002 Phys. Rev. Lett. 88 180404
[50] Ernst P T, Götze S, Krauser J D, Pyka K, Lühmann D S, Pfannkuche D and Sengstock K 2010 Nature Phys. 6 56
[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Theoretical calculations on Landé $g$-factors and quadratic Zeeman shift coefficients of $n$s$n$p $^{3} {P}^{o}_{0}$ clock states in Mg and Cd optical lattice clocks
Benquan Lu(卢本全) and Hong Chang(常宏). Chin. Phys. B, 2023, 32(1): 013101.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] Theoretical calculation of the quadratic Zeeman shift coefficient of the 3P0o clock state for strontium optical lattice clock
Benquan Lu(卢本全), Xiaotong Lu(卢晓同), Jiguang Li(李冀光), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(4): 043101.
[7] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[8] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[9] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[10] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[11] Fulde-Ferrell-Larkin-Ovchinnikov states in equally populated Fermi gases in a two-dimensional moving optical lattice
Jin-Ge Chen(陈金鸽), Yue-Ran Shi(石悦然), Ren Zhang(张仁), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2021, 30(10): 100305.
[12] Generating two-dimensional quantum gases with high stability
Bo Xiao(肖波), Xuan-Kai Wang(王宣恺), Yong-Guang Zheng(郑永光), Yu-Meng Yang(杨雨萌), Wei-Yong Zhang(章维勇), Guo-Xian Su(苏国贤), Meng-Da Li(李梦达), Xiao Jiang(江晓), Zhen-Sheng Yuan(苑震生). Chin. Phys. B, 2020, 29(7): 076701.
[13] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[14] Peierls-phase-induced topological semimetals in an optical lattice: Moving of Dirac points, anisotropy of Dirac cones, and hidden symmetry protection
Jing-Min Hou(侯净敏). Chin. Phys. B, 2020, 29(12): 120305.
[15] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
No Suggested Reading articles found!