Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 088102    DOI: 10.1088/1674-1056/22/8/088102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The enhancement of light-emitting efficiency using GaN-based multiple quantum well light-emitting diodes with nanopillar arrays

Wan Tu-Tu (万图图), Ye Zhan-Qi (叶展圻), Tao Tao (陶涛), Xie Zi-Li (谢自力), Zhang Rong (张荣), Liu Bin (刘斌), Xiu Xiang-Qian (修向前), Li Yi (李毅), Han Ping (韩平), Shi Yi (施毅), Zheng You-Dou (郑有炓)
Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  The quest for higher modulation speed and lower energy consumption has inevitably promoted the rapid development of semiconductor-based solid lighting devices in recent years. GaN-based light-emitting diodes (LEDs) have emerged as promising candidates for achieving high efficiency and high intensity, and have received increasing attention among many researchers in this field. In this paper, we use a self-assembled array-patterned mask to fabricate InGaN/GaN multi-quantum well (MQW) LEDs with the intention of enhancing the light-emitting efficiency. By utilizing inductively coupled plasma etching with a self-assembled Ni cluster as the mask, nanopillar arrays are formed on the surface of the InGaN/GaN MQWs. We then observe the structure of the nanopillars and find that the V-defects on the surface of the conventional structure and the negative effects of threading dislocation are effectively reduced. Simultaneously, we make a comparison of the photoluminescence (PL) spectrum between the conventional structure and the nanopillar arrays, achieved under an experimental set-up with an excitation wavelength of 325 mm. The analysis demonstrates that MQW-LEDs with nanopillar arrays achieve a PL intensity 2.7 times that of conventional LEDs. In response to the PL spectrum, some reasons are proposed for the enhancement in the light-emitting efficiency as follows: 1) the improvement in crystal quality, namely the reduction in V-defects; 2) the roughened surface effect on the expansion of the critical angle and the attenuated total reflection; and 3) the enhancement of the light-extraction efficiency due to forward scattering by surface plasmon polariton modes in Ni particles deposited above the p-type GaN layer at the top of the nanopillars.
Keywords:  nanopillar arrays      InGaN/GaN      multiple quantum wells      quantum efficiency  
Received:  24 October 2012      Revised:  02 February 2013      Accepted manuscript online: 
PACS:  81.07.St (Quantum wells)  
  78.67.Qa (Nanorods)  
  68.65.Fg (Quantum wells)  
Fund: Project supported by the Special Funds for Major State Basic Research Project of China (Grant No. 2011CB301900), the High Technology Research Program of China (Grant No. 2009AA03A198), the National Natural Science Foundation of China (Grant Nos. 60990311, 60721063, 60906025, 60936004, 60731160628, and 60820106003), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK2008019, BK2010385, BK2009255, and BK2010178), and the Research Funds from Nanjing University Yangzhou Institute of Opto-electronics, China.
Corresponding Authors:  Xie Zi-Li     E-mail:  xzl@nju.edu.cn

Cite this article: 

Wan Tu-Tu (万图图), Ye Zhan-Qi (叶展圻), Tao Tao (陶涛), Xie Zi-Li (谢自力), Zhang Rong (张荣), Liu Bin (刘斌), Xiu Xiang-Qian (修向前), Li Yi (李毅), Han Ping (韩平), Shi Yi (施毅), Zheng You-Dou (郑有炓) The enhancement of light-emitting efficiency using GaN-based multiple quantum well light-emitting diodes with nanopillar arrays 2013 Chin. Phys. B 22 088102

[1] Kuniharu T, Fang H, Kumar S B, Kapadia R, Gao Q, Madsen M, Kim H S, Liu C H, Chueh Y L, Plis E, Krishna S, Bechtel H A, Guo J and Javey A 2011 Nano Lett. 11 5008
[2] Okamoto K and Kawakami Y 2009 IEEE Journal of Selected Topics in Quantum Electronics 15 1199
[3] Zubia D and Hersee S D 1999 J. Appl. Phys. 85 6492
[4] Hiroto Sekiguchi, Katsumi Kishino and Akihiko Kikuchi 2010 Appl. Phys. Lett. 96 231104
[5] Cheze C, Geelhaar L, Brandt O, Weber W M, Riechert H, Munch S, Rothemund R, Reitzenstein S, Forchel A, Kehagias T, Komninou P, Dimitrakopulos G P and Karakostas T 2010 Nano Res. 3 528
[6] Li S F and Waag A 2012 J. Appl. Phys. 111 071101
[7] Tang L J, Zheng X H, Zhang D Y, Dong J R, Wang H and Yang H 2011 Chin. Sci. Bull. 56 174 (in Chinese)
[8] Liang C G and Zhang J 1999 Chin. J. Semicond. 20 89
[9] Li J W, Wang Y and Ye Z Z 2001 Semicond. Inf. 38 13
[10] Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang H, Wang J F and Yang H 2012 Chin. Phys. B 21 087802
[11] Zhang J X, Zhang L D and Xu W 2012 J. Phys. D: Appl. Phys. 45 113001
[12] Gao N, Huang K, Li J C, Li S P, Yang X and Kang J Y 2012 Sci. Rep. 2 816
[13] Sugawara H, Ishikawa M and Hatakoshi G 1991 Appl. Phys. Lett. 58 1010
[14] Kock A, Beinstingl W, Berthold K and Gornik E 1988 Appl. Phys. Lett. 52 1164
[15] Wang G P 2006 Physics 35 502 (in Chinese)
[16] Oh Y J and Jeong K H 2012 Adv. Mater. 24 2234
[17] Lin Y Z 2011 "The Research on the Improvement of Lighting Efficiency of LED by Surface Plasmon Technique", Ph. D. dissertation, Shandong University (in Chinese)
[18] Derkacs D, Lim S H, Matheu P, Mar W and Yu E T 2006 Appl. Phys. Lett. 89 093103
[19] Zong X F, Weng Y M, Gao J R and Shao L 1985 Chin. J. Infr. Res. A 4 379
[20] Liu Y Z and Ma R X 1982 Acta Electronica Sinica 5 104
[21] Liu S N, Zou D S, Zhang J M, Gu X L and Shen G D 2008 Research & Progress of SSE 28 245
[22] Wu C Q 2000 Optical Waveguide Theory (Beijing: Tsinghua University Press) p. 176 (in Chinese)
[23] Zhu J H, Wang L J, Zhang S M, Wang H, Zhao D G, Zhu J J, Liu Z S, Jiang D S and Yang H 2011 Chin. Phys. B 20 077804
[24] Liu F Q, Zhang Y Z, Zhang Q S and Wang Z G 2000 Chin. J. Semicond. 21 1038
[25] Qiu D J, Fan W Z, Weng S, Wu H Z and Wang J 2011 Acta Phys. Sin. 60 087301 (in Chinese)
[26] Dang S H, Li C X, Wei J, Zhang Z X, Li T B, Han P D and Xu B S 2012 Opt. Express 20 23290
[1] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[2] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[3] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[4] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[5] Effect of AlGaN interlayer on luminous efficiency and reliability of GaN-based green LEDs on silicon substrate
Jiao-Xin Guo(郭娇欣), Jie Ding(丁杰), Chun-Lan Mo(莫春兰), Chang-Da Zheng(郑畅达), Shuan Pan(潘拴), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047303.
[6] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[7] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[8] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[9] Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate
Qi Wang(王琦), Guo-Dong Yuan(袁国栋), Wen-Qiang Liu(刘文强), Shuai Zhao(赵帅), Lu Zhang(张璐), Zhi-Qiang Liu(刘志强), Jun-Xi Wang(王军喜), Jin-Min Li(李晋闽). Chin. Phys. B, 2019, 28(8): 087802.
[10] Enhanced performance of AlGaN-based ultraviolet light-emitting diodes with linearly graded AlGaN inserting layer in electron blocking layer
Guang Li(李光), Lin-Yuan Wang(王林媛), Wei-Dong Song(宋伟东), Jian Jiang(姜健), Xing-Jun Luo(罗幸君), Jia-Qi Guo(郭佳琦), Long-Fei He(贺龙飞), Kang Zhang(张康), Qi-Bao Wu(吴启保), Shu-Ti Li(李述体). Chin. Phys. B, 2019, 28(5): 058502.
[11] InP quantum dots-based electroluminescent devices
Qianqian Wu(吴倩倩), Fan Cao(曹璠), Lingmei Kong(孔令媚), Xuyong Yang(杨绪勇). Chin. Phys. B, 2019, 28(11): 118103.
[12] Photoluminescence properties of blue and green multiple InGaN/GaN quantum wells
Chang-Fu Li(李长富), Kai-Ju Shi(时凯居), Ming-Sheng Xu(徐明升), Xian-Gang Xu(徐现刚), Zi-Wu Ji(冀子武). Chin. Phys. B, 2019, 28(10): 107803.
[13] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
[14] Total ionizing dose effects in pinned photodiode complementary metal-oxide-semiconductor transistor active pixel sensor
Lin-Dong Ma(马林东), Yu-Dong Li(李豫东), Lin Wen(文林), Jie Feng(冯婕), Xiang Zhang(张翔), Tian-Hui Wang(王田珲), Yu-Long Cai(蔡毓龙), Zhi-Ming Wang(王志铭), Qi Guo(郭旗). Chin. Phys. B, 2018, 27(10): 104207.
[15] Raman spectrum study of δ -doped GaAs/AlAs multiple-quantum wells
Wei-Min Zheng(郑卫民), Wei-Yan Cong(丛伟艳), Su-Mei Li(李素梅), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北). Chin. Phys. B, 2018, 27(1): 017302.
No Suggested Reading articles found!