Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 088103    DOI: 10.1088/1674-1056/22/8/088103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Growth and characterization of ZnO multipods on functional surfaces with different sizes and shapes of Ag particles

A Kamalianfara b, S A Halima c, Mahmoud Godarz Naserid, M Navaserya, Fasih Ud Dina, J A M Zahedie, Kasra Behzadf, K P Lima, A Lavari Monghadamb, S K Chena
a Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
b Department of Physics, Farhangian University, Iran;
c Institute for Mathematical Research, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
d Department of Physics, Faculty of Science, Malayer University, Malayer, Iran;
e Department of Physics, Karaj Branch, Islamic Azad University, Karaj, Iran;
f Department of Physics, Science Faculty, Shahr-e-Ghods Branch, Islamic Azad University, Tehran, Iran
Abstract  Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.
Keywords:  ZnO      ZnO-Ag      surface plasmon resonance  
Received:  01 December 2012      Revised:  07 January 2013      Accepted manuscript online: 
PACS:  81.10.Bk (Growth from vapor)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  78.68.+m (Optical properties of surfaces)  
Fund: Project supported by the Exploratory Research Grant (ERGS) (Grant No. ERGS//11/STG/UPM/01/3).
Corresponding Authors:  S A Halim     E-mail:  ahalim@science.upm.edu.my

Cite this article: 

A Kamalianfar, S A Halim, Mahmoud Godarz Naseri, M Navasery, Fasih Ud Din, J A M Zahedi, Kasra Behzad, K P Lim, A Lavari Monghadam, S K Chen Growth and characterization of ZnO multipods on functional surfaces with different sizes and shapes of Ag particles 2013 Chin. Phys. B 22 088103

[1] Biteen J S, Pacifici D, Lewis N S and Atwater H A 2005 Nano Lett. 5 1768
[2] Hsieh Y P, Liang C T, Chen Y F, Lai C W and Chou P T 2007 Nanotechnology 18 415707
[3] Lin H Y, Cheng C L, Chou Y Y, Huang L L and Chen Y F 2006 Opt. Express 14 2372
[4] Lai C W, An J and Ong H C 2005 Appl. Phys. Lett. 86 251105
[5] Kamalianfar A, Halim S A, Kasra Behzad, and Mahmoud Goodarz Naseri 2013 J. Optoelectron. Adv. Mater. 15 239
[6] Zhao J W, Liu F J, Huang H Q, Hu Z F and Zhang X Q 2012 Chin. Phys. B 21 065201
[7] Wang Z L 2009 Mater. Sci. Eng. R 64 33
[8] Hsueh T J, Hsu C L, Chang S J and Chen I C 2007 Sensor Acttuat. B: Chem. 126 473
[9] Yi G C, Wang C and Park W I 2005 Semicond. Sci. Technol. 20 S22
[10] Xiao Q, Huang S, Zhang J, Xiao C and Tan X 2008 J. Alloys Compd. 459 L18
[11] Su S C, Lu Y M, Zhang Z Z, Li B H, Shen D Z, Yao B and Zhang J Y 2008 Physica B 403 2590
[12] Mishra P, Yadav R S and Pandey A C 2010 Ultrason. Sonochem. 17 560
[13] Kamalianfar A, Halim S A, Pilban Jahromi S and Navasery M 2012 Chin. Phys. Lett. 29 128102
[14] Zhang Z L, Zheng G, Qu F Y and Wu X 2012 Chin. Phys. B 21 098104
[15] Merga G, Cass L C, Chipman D M and Meisel D 2008 J. Am. Chem. Soc. 130 7067
[16] Li C, Fang G J, Guan W J and Zhao X Z 2007 Mater. Lett. 61 3310
[17] Deng S, Fan H M, Zhang X, Loh K P, Cheng C L, Sow C H and Foo Y L 2009 Nanotechnology 20 175705
[18] Schmidt J P, Cross S E and Buratto S K 2004 J. Chem. Phys. 121 10657
[19] Wang J, Fan X M, Tian K, Zhou Z W and Wang Y 2011 Appl. Surf. Sci. 257 7763
[20] Zheng W P, Wau Z, Dai Z R and Wang Z I 2001 Science 291 1947
[21] Yousefi R and Kamaluddin B 2009 J. Alloys Compd. 479 L11
[22] Iwanaga H, Fujii M and Takeuchi S 1993 J. Crystal Growth 134 275
[23] Fonoberov V A, Alim K A, Balandin A A, Xiu F and Liu J 2006 Phys. Rev. B 73 165317
[24] Fonoberov V A and Balandin A A 2004 Appl. Phys. Lett. 85 5971
[25] Dingle R 1969 Phys. Rev. Lett. 23 579
[26] Lu W W, Gao S Y and Wang J J 2008 J. Phys. Chem. C 112 16792
[27] Yin X, Que W, Fei D, Shen F and Guo Q 2012 J. Alloys Compd. 524 13
[28] Vanheusden K, Warren W L, Seager C H and Tallant D R 1996 J. Appl. Phys. 79 7983
[29] Shan G, Xu L H, Wang G R and Liu Y 2007 J. Phys. Chem. C 111 3290
[30] Rajalakshmi M, Akhilesh K A, Bendre B S and Shailaja Mahamuni 2000 Appl. Phys. Lett. 87 2445
[31] Damen T C, Porto S P S and Tell B 1966 Phys. Rev. 142 570
[32] Wang X, Li Q, Liu Z and Zhang J 2004 Appl. Phys. Lett. 84 4941
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[8] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[9] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[10] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[11] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[12] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[13] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[14] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[15] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
No Suggested Reading articles found!