Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 084208    DOI: 10.1088/1674-1056/22/8/084208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Thermal modeling optimization and experimental validation for a single concentrator solar cell system with a heat sink

Cui Min (崔敏)a, Chen Nuo-Fu (陈诺夫)b, Deng Jin-Xiang (邓金祥)a, Liu Li-Ying (刘立英)a
a College of Applied Sciences, Beijing University of Technology, Beijing 100124, China;
b New and Renewable Energy of Beijing Key Laboratory, North China Electric Power University, Beijing 102206, China
Abstract  A single concentrator solar cell model with a heat sink is established to simulate the thermal performance of the system by varying the number, height, and thickness of fins, the base thickness and thermal resistance of the thermal conductive adhesive. Influence disciplines of those parameters on temperatures of the solar cell and heat sink are obtained. With optimized number, height and thickness of fins, and the thickness values of base of 8, 1.4 cm, 1.5 mm, and 2 mm, the lowest temperatures of the solar cell and heat sink are 41.7 ℃ and 36.3 ℃ respectively. A concentrator solar cell prototype with a heat sink fabricated based on the simulation optimized structure is built. Outdoor temperatures of the prototype are tested. Temperatures of the solar cell and heat sink are stabilized with time continuing at about 37 ℃-38 ℃ and 35 ℃-36 ℃ respectively, slightly lower than the simulation results because of effects of the wind and cloud. Thus the simulation model enables to predict the thermal performance of the system, and the simulation results can be a reference for designing heat sinks in the field of single concentrator solar cells.
Keywords:  heat sink      concentrator solar cell      thermal model      cooling  
Received:  02 November 2012      Revised:  05 December 2012      Accepted manuscript online: 
PACS:  42.79.Ek (Solar collectors and concentrators)  
  44.05.+e (Analytical and numerical techniques)  
Fund: Project supported by the Doctoral Initial Fund of Beijing University of Technology, China (Grant No. X0006015201101) and the National Natural Science Foundation of China (Grant Nos. 60876006 and 51202007).
Corresponding Authors:  Cui Min     E-mail:  mcui@bjut.edu.cn

Cite this article: 

Cui Min (崔敏), Chen Nuo-Fu (陈诺夫), Deng Jin-Xiang (邓金祥), Liu Li-Ying (刘立英) Thermal modeling optimization and experimental validation for a single concentrator solar cell system with a heat sink 2013 Chin. Phys. B 22 084208

[1] King R R, Boca A, Hong W, Liu X Q, Bhusari D, Larrabee D, Edmondson K M, Law D C, Fetzer C M, Mesropian S and Karam N H 2009 24th European Photovoltaic Solar Energy Conference and Exhibition, September 21-25, 2009, Hamburg, Germany, p. 21
[2] Anja R, Christopher J D and David R M 2005 Sol. Energy Mat. Sol. C 86 451
[3] Rodriguez D M, Horley P P, Hernandez J G, Vorobiev Y V and Gorley P N 2005 Solar Energy 78 243
[4] Cui M, Chen N F, Yang X L and Zhang H 2012 J. Semicond. 33 024006
[5] Cui M, Chen N F, Yang X L, Wang Y, Bai Y M and Zhang X W 2009 J. Semicond. 30 044011
[6] Edenburn M W 1980 14th IEEE PVSC, January 7-10, 1980, San Diego, CA, USA, p. 771
[7] Chow S, Valdivia C E, Wheeldon J F, Ares R, Arenas O J, Aimez V and Hinzer K 2010 Proc. SPIE 7750 775035
[8] Cui M, Chen N F and Deng J X 2012 Chin. Phys. B 21 034216
[9] Cheknane A, Benyoucef B and Chaker A 2006 Semicond. Sci. Technol. 21 144
[10] Araki K, Uozumi H and Yamaguchi M 2002 29th IEEE PVSC, May 19-24, 2002, New Orleans, LA, USA, p. 1568
[11] Kerzmann T L and Schaefer L A 2010 Proc. SPIE 7769 77690M
[12] Lasich J B 2002 Australia Patent WO02080286
[13] Sun J, Israeli T, Reddy T A, Scoles K, Gordon J M and Feuermann D 2005 J. Sol. Energy Eng. 127 138
[14] Kumar N S, Matty K, Rita E, Simon W, Ortrun A, Alex C, Roland W, Tim G and Kumar M T 2012 Appl. Therm. Eng. 33-34 175
[15] Cotal H and Frost J 2010 35th IEEE PVSC, June 20-25, 2010, Honolulu, Hawaii, USA, p. 000213
[16] Luan Y G, Wang T and Sun H 2010 Appl. Mech. Mater. 34-35 1596
[17] Pena A, Esteban G A, Sancho J, Kolesnik V and Abanades A 2009 Fusion Eng. Des. 84 1479
[18] Tahmaspur M and Berhe M K 2002 Thermal and Thermo Mechanical Phenomena in Electronic Systems, ITHERM, May 30-June 1, 2002, San Diego, CA, USA, p. 737
[19] Yang S M and Tao W S 1998 Heat Transfer (Beijing: Higher Education Press) p. 20 (in Chinese)
[20] Zhong C W, Xie J F, Zhuo C S, Xiong S W and Yin D C 2009 Chin. Phys. B 18 4083
[1] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[2] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[3] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[4] Development of a cryogen-free dilution refrigerator
Zhongqing Ji(姬忠庆), Jie Fan(樊洁), Jing Dong(董靖), Yongbo Bian(边勇波), and Zhi-Gang Cheng(程智刚). Chin. Phys. B, 2022, 31(12): 120703.
[5] Fast qubit initialization in a superconducting circuit
Tianqi Huang(黄天棋), Wen Zheng(郑文), Shuqing Song(宋树清), Yuqian Dong(董煜倩), Xiaopei Yang(杨晓沛), Zhikun Han(韩志坤), Dong Lan(兰栋), and Xinsheng Tan(谭新生). Chin. Phys. B, 2021, 30(7): 070310.
[6] Numerical analysis of motional mode coupling of sympathetically cooled two-ion crystals
Li-Jun Du(杜丽军), Yan-Song Meng(蒙艳松), Yu-Ling He(贺玉玲), and Jun Xie(谢军). Chin. Phys. B, 2021, 30(7): 073702.
[7] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[8] Production of dual species Bose-Einstein condensates of 39K and 87Rb
Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2021, 30(6): 063401.
[9] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[10] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[11] Ground state cooling of an optomechanical resonator with double quantum interference processes
Shuo Zhang(张硕), Tan Li(李坦), Qian-Hen Duan(段乾恒), Jian-Qi Zhang(张建奇), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(2): 023701.
[12] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
[13] Research on the ions' axial temperature of a sympathetically-cooled 113Cd+ ion crystal
Nong-Chao Xin(辛弄潮), Sheng-Nan Miao(苗胜楠), Hao-Ran Qin(秦浩然), Li-Ming Guo(郭黎明), Ji-Ze Han(韩济泽), Hua-Xing Hu(胡华星), Wen-Xin Shi(施文心), Jian-Wei Zhang(张建伟), and Li-Jun Wang(王力军). Chin. Phys. B, 2021, 30(11): 113701.
[14] Giant mechanocaloric materials for solid-state cooling
Junran Zhang(张俊然), Yixuan Xu(徐逸轩), Shihai An(安世海), Ying Sun(孙莹), Xiaodong Li(李晓东), Yanchun Li(李延春). Chin. Phys. B, 2020, 29(7): 076202.
[15] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
No Suggested Reading articles found!