Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 084209    DOI: 10.1088/1674-1056/22/8/084209

The propagation of shape changing soliton in a nonuniform nonlocal media

L. Kavithaa b c, C. Lavanyaa, S. Dhamayanthia, N. Akilaa, D. Gopid
a Department of Physics, Periyar University, Salem-636 011, India;
b The Abdus Salam International Center for Theoretical Physics, Trieste, Italy;
c Center for Nanoscience and Nanotechnology, Periyar University, Salem-636 011, India;
d Department of Chemistry, Periyar University, Salem-636 011, India
Abstract  Magnetization dynamics in uniformly magnetized ferromagnetic media is studied by using Landau-Lifshitz-Gilbert equation. The nonlinear evolution equation is integrable with site-dependent and biquadratic exchange interaction by means of Landau-Lifshitz (LL) equation which is well understood. In the present work, we construct the exact solitary solutions of the nonlinear evolution equation, particularly, we employ the modified extended tangent hyperbolic function method. We show the shape changing property of solitons for the given integrable system in the presence of damping as well as inhomogeneities.
Keywords:  solitons      classical spin models      Maxwell equations      nonlinear dynamics  
Received:  19 January 2013      Revised:  25 February 2013      Accepted manuscript online: 
PACS:  42.81.Dp (Propagation, scattering, and losses; solitons)  
  75.10.Hk (Classical spin models)  
  03.50.De (Classical electromagnetism, Maxwell equations)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Corresponding Authors:  L. Kavitha     E-mail:

Cite this article: 

L. Kavitha, C. Lavanya, S. Dhamayanthi, N. Akila, D. Gopi The propagation of shape changing soliton in a nonuniform nonlocal media 2013 Chin. Phys. B 22 084209

[1] Daniel M and Amuda R 1996 Phys. Rev. B 53 R2930
[2] Daniel M, Kavitha L and Amuda R 1999 Phys. Rev. B 59 13774
[3] Daniel M and Kavitha L 2001 Phys. Rev. B 63 172302
[4] Hu C D 2012 J. Phys.: Condens. Matter 24 086001
[5] Lakshmanan M and Ganesan S 1985 Physica A 132 117
[6] Zakharov E V 1972 Sov. Phys. JETP 35 908
[7] Daniel M and Kavitha L 2002 Phys. Rev. B 66 184433
[8] Kavitha L, Sathishkumar P and Gopi D 2009 Phys. Scr. 79 015402
[9] Abdullaev F K 1994 Theory of Solitons in Inhomogeneous Media (New York: John Wiley and Sons)
[10] Chen H H and Liu C S 1978 Phys. Fluids 21 377
[11] Zhang G Q, Su D C and Bai Y X 1992 Chin. Phys. Lett. 9 519
[12] Yin J, Xiao X S and Yang C X 2009 Acta Phys. Sin. 58 8316 (in Chinese)
[13] Wu Y, Lou C Y, IIan M, Wang T and Gao Y Z 2002 Chin. Phys. 11 578
[14] Xu W C, Zhang S M, Chen W C, Luo A P, Guo Q and Liu S H 2002 Chin. Phys. 11 39
[15] Fu S N, Wu C Q, Liu H T, Shum P and Dong H 2003 Chin. Phys. 12 1423
[16] Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E 76 026605
[17] He P B and Liu W M 2005 Phys. Rev. B 72 064410
[18] Liu W M, Wu B, Zhou X, Campbell D K, Chui S T and Niu Q 2002 Phys. Rev. B 65 172416
[19] Rivier N, Miri M and Oguey C 2005 Colloids Surf. A: Physiochem. Eng. Asp. 263 39
[20] Neubecker R, Benkler E, Martin R and Oppo G L 2003 Phys. Rev. Lett. 91 113903
[21] D'amico P, Fronzoni L, Maione I and Palatella L 2004 Physica D 197 364
[22] Tam T, Ohata D and Wu M 2000 Phys. Rev. E 61 R9
[23] Marian J and Caro A 2006 Phys. Rev. B 74 024113
[24] Knapek C A, Samsonov D, Zhdanov S, Konopka U and Morfill G E 2007 Phys. Rev. Lett. 98 015004
[25] Nosenko V, Zhdanov S, Ivlev A, Knapek C and Morfill G 2009 Phys. Rev. Lett. 103 15001
[26] Alsayed A, Islam M, Zhang J, Collings P and Yodh A 2005 Science 309 1207
[27] Young Y N and Riecke H 2003 Phys. Rev. Lett. 90 134502
[28] Pertsinidis A and Ling X 2001 Nature 413 147
[29] Vlaminck V and Bailleul M 2008 Science 322 410
[30] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
[31] Hayashi M, Thomas L, Moriya R, Rettner C and Parkin S S P 2008 Science 320 209
[32] McMichael R D, Ross C A and Chuang V P 2008 J. Appl. Phys. 103 07C505
[33] Kodama Y and Ablowitz M J 1981 Stud. Appl. Math. 64 225
[34] Porsezian K, Daniel M and Bharathikannan R 1991 Phys. Lett. A 156 206
[35] Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Stud. Appl. Math. 53 249
[36] Ablowitz M J and Segur H 1981 Solitons and Inverse Scattering Transform (Philadephia: SIAM)
[37] Miura R M 1976 Bäcklund Transformations, the Inverse Scattering Method, Solitons, and Their Application (Lecture Notes in Mathematics) (New York: Springer-Verlag)
[38] Konno K and Wadati M 1975 Prog. Theor. Phys. 53 1652
[39] Fogedby H 1980 J. Phys. A: Math. Gen. 13 1467
[40] Ablowitz M J and Clarkson P A 1992 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
[41] Wei Y H 2011 Chin. Phys. B 20 020401
[42] Wazwaz A M 2007 Phys. Lett. A 366 85
[43] Bekir A 2008 Commun. Nonlinear Sci. Numer. Simul. 13 1748
[44] Fan E and Hon Y C 2003 Appl. Math. Comput. 141 351
[45] Kavitha L, Srividya B and Gopi D 2010 J. Magn. Magn. Mater. 322 1793
[46] Kavitha L, Srividya B, Akila N and Gopi D 2010 Nonlinear Sci. Lett. A 1 95
[47] Kavitha L, Prabhu A and Gopi D 2009 Chaos, Solitons and Fractals 42 2322
[48] Kavitha L, Sathiskumar P and Gopi D 2009 Phys. Scr. 79 015402
[49] Kavitha L, Venkatesh M, Jayanthi S and D Gopi 2012 Phys. Scr. 86 025403
[50] Kavitha L, Jayanthi S, Muniyappan A and Gopi D 2011 Phys. Scr. 84 035803
[51] Slobodan Zdravkovic, Kavitha L, Miljko Sataric V, Slobodan Zeković and Jovana Petrović 2012 Chaos, Solitons and Fractals 45 1378
[52] Wazwaz A M 2004 Math. Comput Model. 40 499
[53] Kavitha L, Sathishkumar P, Nathiyaa T and Gopi D 2009 Phys. Scr. 79 035403
[54] Kavitha L, Sathishkumar P and Gopi D 2010 Phys. Scr. 81 035404
[55] Kavitha L, Saravanan M, Akila N, Bhuvaneswari S and Gopi D 2012 Phys. Scr. 85 035007
[56] Kavitha L, Akila N, Prabhu A, Kuzmanovska-Barandovska O and Gopi D 2011 Math. Comput. Model. 53 1095
[57] Dai C Q and Zhang J F 2006 Chaos, Solitons and Fractals 27 1042
[58] Kavitha L, Saravanan M, Srividya B and Gopi D 2011 Phys. Rev. E 84 066608
[59] Chen Y, Li B and Zhang H Q 2004 Chin. Phys. 13 5
[60] Wazwaz A M 2007 Appl. Math. Comput. 190 633
[61] Zuo J M and Zhang Y M 2011 Chin. Phys. B 20 010205
[62] Fan E G 2000 Phys. Lett. A 277 212
[63] Fan E G 2003 J. Phys. A: Math. Gen. 36 7009
[64] Elwakil S A, El-Labany S K, Zahran M A and Sabry R 2002 Phys. Lett. A 299 179
[65] Elwakil S A, El-Labany S K, Zahran M A and Sabry R 2005 Appl. Math. Comput. 161 403
[66] Fan E G and Hon Y C 2002 Z. Naturforsch. 57a 692
[67] Malfliet W 1992 Am. J. Phys. 60 650
[68] Malfliet W and Hereman W 1996 Phys. Scr. 54 563
[69] Malfliet W and Hereman W 1996 Phys. Scr. 54 569
[70] Wazwaz A M 2004 Appl. Math. Comput. 154 713
[71] Riazi N and Sheykhi A 2006 Phys. Rev. D 74 025003
[72] Mishin D D 1991 Magnetic Materials (Moscow: Vysshaya Shkola)
[73] Hubert A and Schäfer R 1998 Magnetic Domains (Berlin: Springer-Verlag)
[74] Villarroel J and Montero M 2010 J. Phys. B: At. Mol. Opt. Phys. 43 135404
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[3] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[4] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[5] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[6] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[7] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[8] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[9] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
[10] Generation and manipulation of bright spatial bound-soliton pairs under the diffusion effect in photovoltaic photorefractive crystals
Ze-Xian Zhang(张泽贤), Xiao-Yang Zhao(赵晓阳), Ye Li(李烨), Hu Cui(崔虎)†, Zhi-Chao Luo(罗智超), Wen-Cheng Xu(徐文成), and Ai-Ping Luo(罗爱平). Chin. Phys. B, 2020, 29(10): 104208.
[11] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
[12] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[13] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[14] Fundamental and dressed annular solitons in saturable nonlinearity with parity-time symmetric Bessel potential
Hong-Cheng Wang(王红成), Ya-Dong Wei(魏亚东), Xiao-Yuan Huang(黄晓园), Gui-Hua Chen(陈桂华), Hai Ye(叶海). Chin. Phys. B, 2018, 27(4): 044203.
[15] Soliton structures in the (1+1)-dimensional Ginzburg-Landau equation with a parity-time-symmetric potential in ultrafast optics
Wenyi Li(李文义), Guoli Ma(马国利), Weitian Yu(于维天), Yujia Zhang(张玉佳), Mengli Liu(刘孟丽), Chunyu Yang(杨春玉), Wenjun Liu(刘文军). Chin. Phys. B, 2018, 27(3): 030504.
No Suggested Reading articles found!