ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
The propagation of shape changing soliton in a nonuniform nonlocal media |
L. Kavithaa b c, C. Lavanyaa, S. Dhamayanthia, N. Akilaa, D. Gopid |
a Department of Physics, Periyar University, Salem-636 011, India; b The Abdus Salam International Center for Theoretical Physics, Trieste, Italy; c Center for Nanoscience and Nanotechnology, Periyar University, Salem-636 011, India; d Department of Chemistry, Periyar University, Salem-636 011, India |
|
|
Abstract Magnetization dynamics in uniformly magnetized ferromagnetic media is studied by using Landau-Lifshitz-Gilbert equation. The nonlinear evolution equation is integrable with site-dependent and biquadratic exchange interaction by means of Landau-Lifshitz (LL) equation which is well understood. In the present work, we construct the exact solitary solutions of the nonlinear evolution equation, particularly, we employ the modified extended tangent hyperbolic function method. We show the shape changing property of solitons for the given integrable system in the presence of damping as well as inhomogeneities.
|
Received: 19 January 2013
Revised: 25 February 2013
Accepted manuscript online:
|
PACS:
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
75.10.Hk
|
(Classical spin models)
|
|
03.50.De
|
(Classical electromagnetism, Maxwell equations)
|
|
05.10.-a
|
(Computational methods in statistical physics and nonlinear dynamics)
|
|
Corresponding Authors:
L. Kavitha
E-mail: louiskavitha@yahoo.co.in
|
Cite this article:
L. Kavitha, C. Lavanya, S. Dhamayanthi, N. Akila, D. Gopi The propagation of shape changing soliton in a nonuniform nonlocal media 2013 Chin. Phys. B 22 084209
|
[1] |
Daniel M and Amuda R 1996 Phys. Rev. B 53 R2930
|
[2] |
Daniel M, Kavitha L and Amuda R 1999 Phys. Rev. B 59 13774
|
[3] |
Daniel M and Kavitha L 2001 Phys. Rev. B 63 172302
|
[4] |
Hu C D 2012 J. Phys.: Condens. Matter 24 086001
|
[5] |
Lakshmanan M and Ganesan S 1985 Physica A 132 117
|
[6] |
Zakharov E V 1972 Sov. Phys. JETP 35 908
|
[7] |
Daniel M and Kavitha L 2002 Phys. Rev. B 66 184433
|
[8] |
Kavitha L, Sathishkumar P and Gopi D 2009 Phys. Scr. 79 015402
|
[9] |
Abdullaev F K 1994 Theory of Solitons in Inhomogeneous Media (New York: John Wiley and Sons)
|
[10] |
Chen H H and Liu C S 1978 Phys. Fluids 21 377
|
[11] |
Zhang G Q, Su D C and Bai Y X 1992 Chin. Phys. Lett. 9 519
|
[12] |
Yin J, Xiao X S and Yang C X 2009 Acta Phys. Sin. 58 8316 (in Chinese)
|
[13] |
Wu Y, Lou C Y, IIan M, Wang T and Gao Y Z 2002 Chin. Phys. 11 578
|
[14] |
Xu W C, Zhang S M, Chen W C, Luo A P, Guo Q and Liu S H 2002 Chin. Phys. 11 39
|
[15] |
Fu S N, Wu C Q, Liu H T, Shum P and Dong H 2003 Chin. Phys. 12 1423
|
[16] |
Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E 76 026605
|
[17] |
He P B and Liu W M 2005 Phys. Rev. B 72 064410
|
[18] |
Liu W M, Wu B, Zhou X, Campbell D K, Chui S T and Niu Q 2002 Phys. Rev. B 65 172416
|
[19] |
Rivier N, Miri M and Oguey C 2005 Colloids Surf. A: Physiochem. Eng. Asp. 263 39
|
[20] |
Neubecker R, Benkler E, Martin R and Oppo G L 2003 Phys. Rev. Lett. 91 113903
|
[21] |
D'amico P, Fronzoni L, Maione I and Palatella L 2004 Physica D 197 364
|
[22] |
Tam T, Ohata D and Wu M 2000 Phys. Rev. E 61 R9
|
[23] |
Marian J and Caro A 2006 Phys. Rev. B 74 024113
|
[24] |
Knapek C A, Samsonov D, Zhdanov S, Konopka U and Morfill G E 2007 Phys. Rev. Lett. 98 015004
|
[25] |
Nosenko V, Zhdanov S, Ivlev A, Knapek C and Morfill G 2009 Phys. Rev. Lett. 103 15001
|
[26] |
Alsayed A, Islam M, Zhang J, Collings P and Yodh A 2005 Science 309 1207
|
[27] |
Young Y N and Riecke H 2003 Phys. Rev. Lett. 90 134502
|
[28] |
Pertsinidis A and Ling X 2001 Nature 413 147
|
[29] |
Vlaminck V and Bailleul M 2008 Science 322 410
|
[30] |
Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190
|
[31] |
Hayashi M, Thomas L, Moriya R, Rettner C and Parkin S S P 2008 Science 320 209
|
[32] |
McMichael R D, Ross C A and Chuang V P 2008 J. Appl. Phys. 103 07C505
|
[33] |
Kodama Y and Ablowitz M J 1981 Stud. Appl. Math. 64 225
|
[34] |
Porsezian K, Daniel M and Bharathikannan R 1991 Phys. Lett. A 156 206
|
[35] |
Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Stud. Appl. Math. 53 249
|
[36] |
Ablowitz M J and Segur H 1981 Solitons and Inverse Scattering Transform (Philadephia: SIAM)
|
[37] |
Miura R M 1976 Bäcklund Transformations, the Inverse Scattering Method, Solitons, and Their Application (Lecture Notes in Mathematics) (New York: Springer-Verlag)
|
[38] |
Konno K and Wadati M 1975 Prog. Theor. Phys. 53 1652
|
[39] |
Fogedby H 1980 J. Phys. A: Math. Gen. 13 1467
|
[40] |
Ablowitz M J and Clarkson P A 1992 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press)
|
[41] |
Wei Y H 2011 Chin. Phys. B 20 020401
|
[42] |
Wazwaz A M 2007 Phys. Lett. A 366 85
|
[43] |
Bekir A 2008 Commun. Nonlinear Sci. Numer. Simul. 13 1748
|
[44] |
Fan E and Hon Y C 2003 Appl. Math. Comput. 141 351
|
[45] |
Kavitha L, Srividya B and Gopi D 2010 J. Magn. Magn. Mater. 322 1793
|
[46] |
Kavitha L, Srividya B, Akila N and Gopi D 2010 Nonlinear Sci. Lett. A 1 95
|
[47] |
Kavitha L, Prabhu A and Gopi D 2009 Chaos, Solitons and Fractals 42 2322
|
[48] |
Kavitha L, Sathiskumar P and Gopi D 2009 Phys. Scr. 79 015402
|
[49] |
Kavitha L, Venkatesh M, Jayanthi S and D Gopi 2012 Phys. Scr. 86 025403
|
[50] |
Kavitha L, Jayanthi S, Muniyappan A and Gopi D 2011 Phys. Scr. 84 035803
|
[51] |
Slobodan Zdravkovic, Kavitha L, Miljko Sataric V, Slobodan Zeković and Jovana Petrović 2012 Chaos, Solitons and Fractals 45 1378
|
[52] |
Wazwaz A M 2004 Math. Comput Model. 40 499
|
[53] |
Kavitha L, Sathishkumar P, Nathiyaa T and Gopi D 2009 Phys. Scr. 79 035403
|
[54] |
Kavitha L, Sathishkumar P and Gopi D 2010 Phys. Scr. 81 035404
|
[55] |
Kavitha L, Saravanan M, Akila N, Bhuvaneswari S and Gopi D 2012 Phys. Scr. 85 035007
|
[56] |
Kavitha L, Akila N, Prabhu A, Kuzmanovska-Barandovska O and Gopi D 2011 Math. Comput. Model. 53 1095
|
[57] |
Dai C Q and Zhang J F 2006 Chaos, Solitons and Fractals 27 1042
|
[58] |
Kavitha L, Saravanan M, Srividya B and Gopi D 2011 Phys. Rev. E 84 066608
|
[59] |
Chen Y, Li B and Zhang H Q 2004 Chin. Phys. 13 5
|
[60] |
Wazwaz A M 2007 Appl. Math. Comput. 190 633
|
[61] |
Zuo J M and Zhang Y M 2011 Chin. Phys. B 20 010205
|
[62] |
Fan E G 2000 Phys. Lett. A 277 212
|
[63] |
Fan E G 2003 J. Phys. A: Math. Gen. 36 7009
|
[64] |
Elwakil S A, El-Labany S K, Zahran M A and Sabry R 2002 Phys. Lett. A 299 179
|
[65] |
Elwakil S A, El-Labany S K, Zahran M A and Sabry R 2005 Appl. Math. Comput. 161 403
|
[66] |
Fan E G and Hon Y C 2002 Z. Naturforsch. 57a 692
|
[67] |
Malfliet W 1992 Am. J. Phys. 60 650
|
[68] |
Malfliet W and Hereman W 1996 Phys. Scr. 54 563
|
[69] |
Malfliet W and Hereman W 1996 Phys. Scr. 54 569
|
[70] |
Wazwaz A M 2004 Appl. Math. Comput. 154 713
|
[71] |
Riazi N and Sheykhi A 2006 Phys. Rev. D 74 025003
|
[72] |
Mishin D D 1991 Magnetic Materials (Moscow: Vysshaya Shkola)
|
[73] |
Hubert A and Schäfer R 1998 Magnetic Domains (Berlin: Springer-Verlag)
|
[74] |
Villarroel J and Montero M 2010 J. Phys. B: At. Mol. Opt. Phys. 43 135404
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|