Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 084205    DOI: 10.1088/1674-1056/22/8/084205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Different supercontinuum generation processes in photonic crystal fibers pumped with a 1064-nm picosecond pulse

Chen Hong-Wei (谌鸿伟), Jin Ai-Jun (靳爱军), Chen Sheng-Ping (陈胜平), Hou Jing (侯静), Lu Qi-Sheng (陆启生)
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  Picosecond pulse pumped supercontinuum generation in photonic crystal fiber is investigated by performing a series of comparative experiments. The main purpose is to investigate the supercontinuum generation processes excited by a given pump source through the experimental study of some specific fibers. A 20-W all-fiber picosecond master oscillator-power amplifier (MOPA) laser is used to pump three different kinds of photonic crystal fibers for supercontinuum generation. Three diverse supercontinuum formation processes are observed to correspond to photonic crystal fibers with distinct dispersion properties. The experimental results are consistent with the relevant theoretical results. Based on the above analyses, a watt-level broadband white light supercontinuum source spanning from 500 nm to beyond 1700 nm is demonstrated by using a picosecond fiber laser in combination with the matched photonic crystal fiber. The limitation of the group velocity matching curve of the photonic crystal fiber is also discussed in the paper.
Keywords:  picosecond pulse      photonic crystal fiber      nonlinear fiber optics      supercontinuum generation  
Received:  13 January 2013      Revised:  02 February 2013      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.65.-k (Nonlinear optics)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 61235008) and the Postgraduate Innovation Foundation of National University of Defense Technology, China (Grant No. B110704).
Corresponding Authors:  Hou Jing     E-mail:  houjing25@sina.com

Cite this article: 

Chen Hong-Wei (谌鸿伟), Jin Ai-Jun (靳爱军), Chen Sheng-Ping (陈胜平), Hou Jing (侯静), Lu Qi-Sheng (陆启生) Different supercontinuum generation processes in photonic crystal fibers pumped with a 1064-nm picosecond pulse 2013 Chin. Phys. B 22 084205

[1] Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25
[2] Dudley J M and Taylor J R 2010 Supercontinuum Generation in Photonic Crystal Fibers (New York: Cambridge University Press)
[3] Wang X Y, Li S G, Liu S, Yin G B and Li J S 2012 Chin. Phys. B 21 054220
[4] Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135
[5] Genty G, Coen S and Dudley J M 2007 J. Opt. Soc. Am. B 24 1771
[6] Stone J M and Knight J C 2012 Opt. Fiber Technol. 18 315
[7] Yuan J H, Sang X Z, Yu C X, Xin X J, Shen X W, Zhang J L, Zhou G Y, Li S G and Hou L T 2011 Chin. Phys. B 20 054210
[8] Fang X H, Wang Q Y, Liu J J, Liu B W, Li Y F, Chai L and Hu M L 2010 Chin. J. Lasers 37 1585
[9] Labat D, Mélin G, Mussot A, Fleureau A, Galkovsky L, Lempereur S and Kudlinski A 2011 IEEE Photon. J. 3 815
[10] Pan E M, Ruan S C, Guo C Y, Wang Y C and Wei H F 2010 Chin. Phys. Lett. 27 100702
[11] Chen K K, Alam S U, Price J H V, Hayes J R, Lin D J, Malinowski A, Codemard C, Ghosh D, Pal M, Bhadra S K and Richardson D J 2010 Opt. Express 18 5426
[12] Zhu X, Zhang X B, Chen X, Peng J G, Dai N L and Li J Y 2012 Chin. Phys. Lett. 29 124210
[13] Chen S P, Chen H W, Hou J and Liu Z J 2009 Opt. Express 17 24008
[14] Hu X, Zhang W, Yang Z, Wang Y, Zhao W, Li X, Wang H, Li C and Shen D 2011 Opt. Lett. 36 2659
[15] Chen H W, Lei Y, Chen S P, Hou J and Lu Q S 2012 Appl. Phys. B 109 233
[16] Chen H W, Chen S P and Hou J 2011 Laser Phys. 21 191
[17] Chen H W, Chen S P, Wang J H, Chen Z L and Hou J 2011 Opt. Commun. 248 5484
[18] Xiao L M, Demokan M S, Jin W, Wang Y and Zhao C L 2007 J. Lightwave Technol. 25 3563
[19] Xi X M, Chen Z L, Sun G L and Hou J 2011 Appl. Opt. 50 E50
[1] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[2] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[3] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[4] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[5] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[6] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[7] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[8] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
[9] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
[10] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[11] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[12] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[13] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[14] Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton
Song-Tao Fan(樊松涛), Yan-Yan Zhang(张颜艳), Lu-Lu Yan(闫露露), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2019, 28(6): 064204.
[15] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
No Suggested Reading articles found!