Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077308    DOI: 10.1088/1674-1056/22/7/077308
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Bipolar resistive switching based on bis(8-hydroxyquinoline) cadmium complex:Mechanism and non-volatile memory application

Wang Ying (王颖), Yang Ting (杨汀), Xie Ji-Peng (谢吉鹏), Lü Wen-Li (吕文理), Fan Guo-Ying (范国莹), Liu Su (刘肃)
Institute of Microelectronics, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  Stable and persistent bipolar resistive switching was observed in an organic diode with the structure of indium-tin oxide (ITO)/bis(8-hydroxyquinoline) cadmium (Cdq2)/Al. Aggregate formation and electric field driven trapping and detrapping of charge carriers in the aggregate states that lie in the energy gap of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the organic molecule were proposed as the mechanism of the observed bipolar resistive switching, which was solidly supported by the results of AFM investigations. Repeatedly set, read, and reset measurements demonstrated that the device is potentially applicable in non-volatile memories.
Keywords:  resistive switching      memory      aggregation      bis(8-hydroxyquinoline) cadmium  
Received:  21 October 2012      Revised:  22 January 2013      Accepted manuscript online: 
PACS:  73.40.Sx (Metal-semiconductor-metal structures)  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
  73.61.Ph (Polymers; organic compounds)  
  85.65.+h (Molecular electronic devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974074).
Corresponding Authors:  Liu Su     E-mail:  liusu@lzu.edu.cn

Cite this article: 

Wang Ying (王颖), Yang Ting (杨汀), Xie Ji-Peng (谢吉鹏), Lü Wen-Li (吕文理), Fan Guo-Ying (范国莹), Liu Su (刘肃) Bipolar resistive switching based on bis(8-hydroxyquinoline) cadmium complex:Mechanism and non-volatile memory application 2013 Chin. Phys. B 22 077308

[1] Panda D, Dhar A and Ray S K 2010 J. Appl. Phys. 108 104513
[2] Zhang X T, Yu Q X, Yao Y P and Li X G 2010 Appl. Phys. Lett. 97 222117
[3] Zhong W X, Chen X, Wu N J and Ignatiev A 2011 Chin. Phys. B 20 097703
[4] Zhao J W, Liu F J, Huang H Q, Hu Z F and Zhang X Q 2012 Chin. Phys. B 21 065201
[5] Li Y T, Long S B, Lü H B, Liu Q, Wang Q, Wang Y, Zhang S, Lian W T, Liu S and Liu M 2011 Chin. Phys. B 20 017305
[6] Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W and Chen D M 2010 Chin. Phys. B 19 037304
[7] Rolfe N, Desai P, Shakya P, Kreouzis T and Gillin W P 2008 J. Appl. Phys. 104 083703
[8] Lee S, Kim H, Park J and Tong K J 2010 J. Appl. Phys. 108 076101
[9] Tondelier D, Lmimouni K, Vuillaumea D, Fery C and Haas G 2004 Appl. Phys. Lett. 85 5763
[10] Shi J P, Wen Z C, Song C A and Peng Y Q 2005 Chin. J. Semicond. 26 1979
[11] Chen J S and Ma D G 2005 Appl. Phys. Lett. 87 023505
[12] Potember R S, Poehler T O and Cowan D O 1979 Appl. Phys. Lett. 34 405
[13] Li X S, Peng Y Q, Song C A, Yang Q S, Zhao M, Yuan J T and Wang H 2008 Chin. J. Vacuum Sci. Techn. 28 394
[14] Müller R, Genoe J and Heremans P 2009 Appl. Phys. Lett. 95 133509
[15] Lin J and Ma D G 2009 Organic Electronics 10 275
[16] Chen Y C, Su Y K, Yu H C, Huang C Y and Huang T S 2011 Appl. Phys. Lett. 99 143308
[17] Ouyang J Y, Chu C W, Szmanda C R, Ma L P and Y Y 2004 Nature Materials 3 918
[18] Xu X J, Li L D, Liu B and Zou Y P 2011 Appl. Phys. Lett. 98 063303
[19] Lauters M, McCarthy B, Sarid D and Jabbour G E 2006 Appl. Phys. Lett. 89 013507
[20] Liu G, Zhuang X D, Chen Y, Zhang B, Zhu J H, Zhu C X, Neoh K G and Kang E T 2009 Appl. Phys. Lett. 95 253301
[21] Kim T W, Oh S H, Lee J, Choi H, Wang G, Park J, Kim D Y, Hwang H and Lee T 2010 Organic Electronics 11 109
[22] Liu X H, Ji Z Y, Tu D Y, Shang L W, Liu J, Liu M and Xie C Q 2009 Organic Electronics 10 1191
[23] Moeller S, Forrest S R, Perlov C, Jackson W and Taussig C 2003 J. Appl. Phys. 94 7811
[24] Ling Q D, Song Y, Ding S J, Zhu C X, Chan D S H, Kwong D L, Kang E T and Neoh K G 2005 Adv. Mater. 17 455
[25] Song Y, Tan Y P, Teo E Y H, Zhu C X, Chan D S H, Ling Q D, Neoh K G and Kang E T 2006 J. Appl. Phys. 100 084508
[26] Prakash A, Ouyang J Y, Lin J L and Yang Y 2006 J. Appl. Phys. 100 054309
[27] Lai P Y and Chen J S 2009 Organic Electronics 10 1590
[28] Chu C W, Ouyang J Y, Tseng J H and Yang Y 2005 Adv. Mater. 17 1440
[29] Bandyopadhyay A and Pal A J 2004 Appl. Phys. Lett. 84 999
[30] Ma L P, Liu J and Yang Y 2002 Appl. Phys. Lett. 80 2997
[31] Ma L P, Pyo S, Ouyang J Y, Xu Q F and Yang Y 2003 Appl. Phys. Lett. 82 1419
[32] Bozano L D, Kean B W, Deline V R, Salem J R and Scott J C 2004 Appl. Phys. Lett. 84 607
[33] Reddy V S, Karak S and Dhar A 2009 Appl. Phys. Lett. 94 173304
[34] Li Y, Qiu D F, Cao L Q, Shao C X, Pan L J, Pu L, Xu J Band Shi Y 2010 Appl. Phys. Lett. 96 133303
[35] Ma L P, Xu Q F and Yang Y 2004 Appl. Phys. Lett. 84 4908
[36] Verbakel F, Meskers S C J, Janssen R A J, Gomes H L, Cölle M, Büchel M and de Leeuw D M 2007 Appl. Phys. Lett. 91 192103
[37] Tang W, Shi H Z, Xu Gu, Ong B S, Popovic Z D, Deng J, Zhao J and Rao G 2005 Adv. Mater. 17 2307
[38] Li Q, Surthi S, Mathur G, Gowda S, Misra V, Sorenson T A, Tenent R C, Kuhr W G, Tamaru S, Lindsey J S, Liu Z M and Bocian D F 2003 Appl. Phys. Lett. 83 198
[39] Bandyopadhyay A and Pal A J 2003 Appl. Phys. Lett. 82 1215
[40] Sim R, Chan M Y, Wong A S W and Lee P S 2011 Organic Electronics 12 185
[41] Li H, Zhang F J, Wang Y Y and Zheng D S 2003 Mater. Sci. Engin. B 100 40
[42] Xie X N, Wang J Z, Loh K P and Wee A T S 2009 Appl. Phys. Lett. 95 203302
[43] Scott J C and Bozano L D 2007 Adv. Mater. 19 1452
[44] Yang Y, Ouyang J Y, Ma L P, Tseng R J H and Chu C W 2006 Adv. Funct. Mater. 16 1001
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[4] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[5] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[6] Ionospheric vertical total electron content prediction model in low-latitude regions based on long short-term memory neural network
Tong-Bao Zhang(张同宝), Hui-Jian Liang(梁慧剑),Shi-Guang Wang(王时光), and Chen-Guang Ouyang(欧阳晨光). Chin. Phys. B, 2022, 31(8): 080701.
[7] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[8] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[9] Traffic flow prediction based on BILSTM model and data denoising scheme
Zhong-Yu Li(李中昱), Hong-Xia Ge(葛红霞), and Rong-Jun Cheng(程荣军). Chin. Phys. B, 2022, 31(4): 040502.
[10] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[11] Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity
Jing Wang(王静), Hua Li(李华), Xiankai Jiang(姜先凯), Bin Wu(吴斌), Jun Guo(郭俊), Xiurong Su(苏秀榕), Xingfei Zhou(周星飞), Yu Wang(王宇), Geng Wang(王耿), Heping Geng(耿和平), Zheng Jiang(姜政), Fang Huang(黄方), Gang Chen(陈刚), Chunlei Wang(王春雷), Haiping Fang(方海平), and Chenqi Xu(许琛琦). Chin. Phys. B, 2022, 31(10): 108702.
[12] An extended smart driver model considering electronic throttle angle changes with memory
Congzhi Wu(武聪智), Hongxia Ge(葛红霞), and Rongjun Cheng(程荣军). Chin. Phys. B, 2022, 31(1): 010504.
[13] Tunable inhibition of β-amyloid peptides by fast green molecules
Tiantian Yang(杨甜甜), Tianxiang Yu(俞天翔), Wenhui Zhao(赵文辉), and Dongdong Lin(林冬冬). Chin. Phys. B, 2021, 30(8): 088701.
[14] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[15] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
No Suggested Reading articles found!