Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 107803    DOI: 10.1088/1674-1056/20/10/107803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improving efficiency of organic light-emitting devices by optimizing the LiF interlayer in the hole transport layer

Jiao Zhi-Qiang(焦志强)a)b)c), Wu Xiao-Ming(吴晓明)a)b)c), Hua Yu-Lin(华玉林)a)b)c), Dong Mu-Sen(董木森)a)b)c), Su Yue-Ju(苏跃举)a)b)c), Shen Li-Ying(申利莹)a)b)c), and Yin Shou-Gen(印寿根)a)b)c)
School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin 300384, China; c Tianjin Key Laboratory for Photoelectric MatTianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin 300384, China
Abstract  The efficiency of organic light-emitting devices (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-N,1'-biphenyl-4,4'-diamine (NPB) (the hole transport layer) and tris(8-hydroxyquinoline) aluminum (Alq3) (both emission and electron transport layers) is improved remarkably by inserting a LiF interlayer into the hole transport layer. This thin LiF interlayer can effectively influence electrical performance and significantly improve the current efficiency of the device. A device with an optimum LiF layer thickness at the optimum position in NPB exhibits a maximum current efficiency of 5.96 cd/A at 215.79 mA/cm2, which is about 86% higher than that of an ordinary device (without a LiF interlayer, 3.2 cd/A). An explanation can be put forward that LiF in the NPB layer can block holes and balance the recombination of holes and electrons. The results may provide some valuable references for improving OLED current efficiency.
Keywords:  organic light-emitting devices      LiF      interlayer      efficiency  
Received:  04 May 2011      Revised:  02 June 2011      Accepted manuscript online: 
PACS:  78.60.Fi (Electroluminescence)  
  73.61.Ng (Insulators)  
  73.61.Ph (Polymers; organic compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60906022 and 60876046) and the Tianjin Natural Science Foundation of China (Grant No. 10JCYBJC01100).

Cite this article: 

Jiao Zhi-Qiang(焦志强), Wu Xiao-Ming(吴晓明), Hua Yu-Lin(华玉林), Dong Mu-Sen(董木森), Su Yue-Ju(苏跃举), Shen Li-Ying(申利莹), and Yin Shou-Gen(印寿根) Improving efficiency of organic light-emitting devices by optimizing the LiF interlayer in the hole transport layer 2011 Chin. Phys. B 20 107803

[1] Tang C W and VanSlyke S A 1987 Appl. Phys. Lett. 51 913
[2] Tseng R J, Chiechi R C, Fred W and Yang Y 2006 Appl. Phys. Lett. 88 093512
[3] Brian W D'A and Stephen R F 2004 Adv. Mater. 16 1585
[4] Lee M T, Lin J S, Chu M T and Tseng M R 2008 Appl. Phys. Lett. 93 133306
[5] Cao J S, Guan M, Cao G H, Zeng Y P, Li J M and Qin D S 2008 Chin. Phys. B 17 2725
[6] Chen S J, Yu J S, Wen W and Jiang Y D 2011 Acta Phys. Sin. 60 037202 (in Chinese)
[7] VanSlyke S A, Chen C H and Tang C W 1996 Appl. Phys. Lett. 69 2160
[8] Xiao J, Deng Z B, Liang C J, Xu D H, Xu Y and Guo D 2005 Physica E 28 323
[9] Lian J R, Yuan Y B, Cao L F, Zhang J, Pang H Q, Zhou Y F and Zhou X 2007 J. Lumin. 122-123 660
[10] Niu L B and Guan Y X 2009 Acta Phys. Sin. 58 4931 (in Chinese)
[11] Qiu Y, Gao Y D, Wei P and Wang L D 2002 Appl. Phys. Lett. 80 2628
[12] Hung L S, Tang C W and Mason M G 1997 Appl. Phys. Lett. 70 152
[13] Zhao Y, Liu S Y and Hou J Y 2001 Thin Solid Films 397 208
[14] Zhou E Y, Deng Z B, Lü Z Y, Chen Z, Xu D H and Wang Y S 2009 Curr. Appl. Phys. 9 1365
[15] Banga H S, Chooa D C, Kima T W, Parkb J H, Seob J H and KimbMol Y K 2009 Cryst. Liq. Cryst. 498 265
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[5] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[6] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[7] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[8] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[9] Ru thickness-dependent interlayer coupling and ultrahigh FMR frequency in FeCoB/Ru/FeCoB sandwich trilayers
Le Wang(王乐), Zhao-Xuan Jing(荆照轩), Ao-Ran Zhou(周傲然), and Shan-Dong Li(李山东). Chin. Phys. B, 2022, 31(8): 086201.
[10] Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰). Chin. Phys. B, 2022, 31(8): 083101.
[11] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[12] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[13] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[14] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[15] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
No Suggested Reading articles found!