Special Issue:
TOPICAL REVIEW — ZnO-related materials and devices
|
TOPICAL REVIEW—ZnO-related materials and devices |
Prev
Next
|
|
|
ZnO-based deep-ultraviolet light-emitting devices |
Ying-Jie Lu(卢英杰)1, Zhi-Feng Shi(史志锋)1, Chong-Xin Shan(单崇新)1,2, De-Zhen Shen(申德振)2 |
1 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China;
2 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 |
|
|
Abstract Deep-ultraviolet (DUV) light-emitting devices (LEDs) have a variety of potential applications. Zinc-oxide-based materials, which have wide bandgap and large exciton binding energy, have potential applications in high-performance DUV LEDs. To realize such optoelectronic devices, the modulation of the bandgap is required. This has been demonstrated by the developments of MgxZn1-xO and BexZn1-xO alloys for the larger bandgap materials. Many efforts have been made to obtain DUV LEDs, and promising successes have been achieved continuously. In this article, we review the recent progress of and problems encountered in the research of ZnO-based DUV LEDs.
|
Received: 22 October 2016
Revised: 27 November 2016
Accepted manuscript online:
|
|
Fund: Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 61425021) and the Natural Natural Science Foundation of China (Grant Nos. 11374296, 61376054, 61475153, and 61604132). |
Corresponding Authors:
Chong-Xin Shan
E-mail: shancx@ciomp.ac.cn
|
Cite this article:
Ying-Jie Lu(卢英杰), Zhi-Feng Shi(史志锋), Chong-Xin Shan(单崇新), De-Zhen Shen(申德振) ZnO-based deep-ultraviolet light-emitting devices 2017 Chin. Phys. B 26 047703
|
[1] |
Oto T, Banal R G, Kataoka K, Funato M and Kawakami Y 2010 Nat. Photon. 4 645
|
[2] |
Watanabe K, Taniguchi T, Niiyama T, Miya K and Taniguchi M 2009 Nat. Photon. 3 591
|
[3] |
Schubert E F and Cho J 2010 Nat. Photon. 4 735
|
[4] |
Adivarahan V, Heidari A, Zhang B, Fareed Q, Hwang S, Islam M and Khan A 2009 Appl. Phys. Express 2 102101
|
[5] |
Zhang Y T, Xia X C, Wu B, Shi Z F, Yang F, Yang X T, Zhang B L and Du G T 2014 Chin. Phys. Lett. 31 058101
|
[6] |
Taniyasu Y, Kasu M and Makimoto T 2006 Nature 441 325
|
[7] |
Zhong H M, Lu W, Sun Y and Li Z F 2007 Chin. Phys. Lett. 24 2678
|
[8] |
Aoyagi Y and Kurose N 2013 Appl. Phys. Lett. 102 041114
|
[9] |
Xia X C, Wang H, Zhao Y, Wang J, Zhao J Z, Shi Z F, Li X P, Liang H W, Zhang B L and Du G T 2011 Chin. Phys. Lett. 28 108101
|
[10] |
Hirayama H, Noguchi N, Yatabe T and Kamata N 2008 Appl. Phys. Express 1 051101
|
[11] |
Sang D D, Li H D, Chegn S H, Wang Q L, Yu Q and Yang Y Z 2012 Appl. Phys. Lett. 112 036101
|
[12] |
Wei B, Liu J Z, Zhang Y, Zhang J H, Peng H N, Fan H L, He Y B and Gao X C 2010 Adv. Funct. Mater. 20 2448
|
[13] |
Tan S, Egawa T, Luo X D, Sun L, Zhu Y H and Zhang J C 2016 J. Phys. D: Appl. Phys. 49 125102
|
[14] |
Reich C, Guttmann M, Feneberg M, Wernicke T, Mehnke F, Kuhn C, Rass J, Laperrade M, Einfeldt S and Knauer A 2015 Appl. Phys. Lett. 107 142101
|
[15] |
Goh E S M, Yang H Y, Han Z J, Chen T P, Ostrikov K 2012 Appl. Phys. Lett. 101 263506
|
[16] |
Zhou S Q, Wu M F, Yao S D, Wang L and Jiang F Y 2006 Chin. Phys. Lett. 23 1023
|
[17] |
Wang Z J, Wang Z J, Li S C, Wang Z H, Lv Y M and Yuan J S 2004 Chin. Phys. 13 750
|
[18] |
Zhao F Q, Zhang M and Bai J H 2015 Chin. Phys. B 24 097105
|
[19] |
Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T and Segawa Y 1998 Appl. Phys. Lett. 72 2466
|
[20] |
Ohtomo A, Tamura K, Kawasaki M, Makino T, Segawa Y, Tang Z K, Wong G K L, Matsumoto Y and Koinuma H 2000 Appl. Phys. Lett. 77 2204
|
[21] |
Gruber T, Kirchner C, Kling R, Reuss F, Waag A 2004 Appl. Phys. Lett. 84 5359
|
[22] |
Kim W J, Leem J H, Han M S, Park I W, Ryu Y R and Lee T S 2006 J. Appl. Phys. 99 096104
|
[23] |
Ryu Y, Lee T S, Lubguban J A, White H W, Kim B J, Park Y S and Youn C J 2006 Appl. Phys. Lett. 88 241108
|
[24] |
Su Y Q, Chen M M, Su L X, Zhu Y and Tang Z K 2016 Chin. Phys. B 25 066106
|
[25] |
Roessler D M and Walker W C 1967 Phys. Rev. 159 733
|
[26] |
Boguslawski P and Bernholc J 1997 Phys. Rev. B 56 9496
|
[27] |
Look D C, Claflin B, Alivov Y I and Park S J 2004 Phys. Status Solidi A 201 2203
|
[28] |
Thomas M A and Cui J B 2010 J. Phys. Chem. Lett. 1 1090
|
[29] |
Shan C X, Liu J S, Lu Y J, Li B H, Ling F C and Shen D Z 2015 Opt. Lett. 40 3041
|
[30] |
Liu J S, Shan C X, Shen H, Li B H, Zhang Z Z, Liu L, Zhang L G and Shen D Z 2012 Appl. Phys. Lett. 101 011106
|
[31] |
Liu X Y, Shan C X, Jiao C, Wang S P, Zhao H F and Shen D Z 2014 Opt. Lett. 39 422
|
[32] |
Liu J S, Shan C X, Li B H, Zhang Z Z, Liu K W and Shen D Z 2013 Opt. Lett. 38 2113
|
[33] |
Echresh A, Chey C O, Shoushtari M Z, Nur O and Willander M 2015 J. Lumin. 160 305
|
[34] |
Zhu H, Shan C X, Li B H, Zhang J Y, Yao B, Zhang Z Z, Zhao D X, Shen D Z and Fan X W 2009 J. Phys. Chem. C 113 2980
|
[35] |
Chu S, Zhao S J, Xiong Z Q and Chu G 2011 J. Nanosci. Nanotechnol. 11 8527
|
[36] |
Walker L G and Pratt G W 1976 J. Appl. Phys. 47 2129
|
[37] |
Lagerstedt O, Monemar B and Gislason H 1978 J. Appl. Phys. 49 2953
|
[38] |
Thomas B W and Walsh D 1973 Electron Lett. 9 362
|
[39] |
Xu Y, Li Y P, Jin Y, Ma X Y and Yang D R 2013 Acta Phys. Sin. 62 084207 (in Chinese)
|
[40] |
Wang H T, Kang B S, Chen J J, Anderson T, Jang S and Ren F 2006 Appl. Phys. Lett. 88 102107
|
[41] |
Hwang D K, Oh M S, Lim J H, Choi Y S and Park S J 2007 Appl. Phys. Lett. 91 121113
|
[42] |
Minamim T, Tanigawa A, Yamanishi M and Kawamura T 1974 Jpn. J. Appl. Phys. 13 1475
|
[43] |
Chen P L, Ma X Y and Yang D R 2006 Appl. Phys. Lett. 89 111112
|
[44] |
Zhu H, Shan C X, Zhang J Y, Zhang Z Z, Li B H, Zhao D X, Yao B, Shen D Z, Fan X W, Tang Z K, Hou X and Choy K L 2010 Adv. Mater. 22 1877
|
[45] |
Zhu H, Shan C X, Li B H, Zhang Z Z, Shen D Z and Choy K L 2011 J. Mater. Chem. 21 2848
|
[46] |
Zhu H, Shan C X, Li B H, Zhang Z Z, Yao B and Shen D Z 2011 Appl. Phys. Lett. 99 101110
|
[47] |
Watanabe K, Taniguchi T and Kanda H 2004 Nat. Mater. 3 404
|
[48] |
Koizumi S, Watanabe K, Hasegawa M and Kanda H 2001 Science 292 1899
|
[49] |
Nakajima Y, Kojima A and Koshida N 2002 Appl. Phys. Lett. 81 2472
|
[50] |
Yoshiki N, Tetsuya U, Hajime T, Akira K, Bernard G and Nobuyoshi K 2004 Jpn. J. Appl. Phys. 43 2076
|
[51] |
Jiang W, Zhao S, Xu Z and Zhang F 2008 Displays 29 432
|
[52] |
Zhao S, Xu Z, Zhang F, Wang Y, Ji G and Xu X 2009 J. Appl. Phys. 106 0235131
|
[53] |
Ni P N, Shan C X, Wang S P, Li B H, Zhang Z Z and Shen D Z 2012 Opt. Lett. 37 15681
|
[54] |
Ni P N, Shan C X, Li B H and Shen D Z 2014 Appl. Phys. Lett. 104 032107
|
[55] |
Xu T N, Wu H Z, Qiu D J and Chen N B 2003 Chin. Phys. Lett. 20 1829
|
[56] |
Khoshman J M, Ingram D C and Kordesch M E 2008 Appl. Phys. Lett. 92 0919021
|
[57] |
Wu C X, Lv Y M, Shen D Z, Wei Z P, Zhang Z Z, Li B H, Zhang J Y, Liu Y C and Fan X W 2005 Chin. Phys. Lett. 22 2655
|
[58] |
Chang Y S, Chien C T, Chen C W, Chu T Y, Chiang H H, Ku C H, Wu J J, Lin C S, Chen L C and K H Chen 2007 J. Appl. Phys. 101 033502
|
[59] |
Zhu Y, Chen M M, Su L X, Su Y Q, Ji X, Gui X C and Tang Z K 2014 J. Alloys Compd. 616 505
|
[60] |
Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J and Kim W J 2006 Appl. Phys. Lett. 88 052103
|
[61] |
Ryu Y, Lee T S, Lubguban J A, White H W, Kim B J, Park Y S and Youn C J 2006 Appl. Phys. Lett. 88 241108
|
[62] |
Ryu Y, Lubguban J A, Lee T S, White H W, Jeong T S, Youn C J and Kim B J 2007 Appl. Phys. Lett. 90 131115
|
[63] |
Ganmukhi R, Calciati M, Goano M and Bellotti E 2012 Semicond. Sci. Technol. 27 125015
|
[64] |
Chen A, Zhu H, Wu Y, Chen M, Zhu Y, Gui X and Tang Z K 2016 Adv. Funct. Mater. 26 3696
|
[65] |
Furno E, Chiaria S, Penna M, Bellotti E and Goano M 2010 J. Electron. Mater. 39 936
|
[66] |
Panwar N, Liriano J and Katiyar R S 2011 J. Alloys Compd. 509 1222
|
[67] |
Su X, Si P, Hou Q, Kong X and Cheng W 2009 Physica B 404 1794
|
[68] |
Yang C, Li X M, Gao X D, Cao X, Yang R and Li Y Z 2010 J. Cryst. Growth 312 978
|
[69] |
Yang C, Li X M, Gu Y F, Yu W D, Gao X D and Zhang Y W 2008 Appl. Phys. Lett. 93 112114
|
[70] |
Lee H Y, Chang H Y, Lou L R and Lee C T 2008 IEEE Photon. Technol. Lett. 25 1770
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|