Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047703    DOI: 10.1088/1674-1056/26/4/047703
Special Issue: TOPICAL REVIEW — ZnO-related materials and devices
TOPICAL REVIEW—ZnO-related materials and devices Prev   Next  

ZnO-based deep-ultraviolet light-emitting devices

Ying-Jie Lu(卢英杰)1, Zhi-Feng Shi(史志锋)1, Chong-Xin Shan(单崇新)1,2, De-Zhen Shen(申德振)2
1 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China;
2 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033
Abstract  

Deep-ultraviolet (DUV) light-emitting devices (LEDs) have a variety of potential applications. Zinc-oxide-based materials, which have wide bandgap and large exciton binding energy, have potential applications in high-performance DUV LEDs. To realize such optoelectronic devices, the modulation of the bandgap is required. This has been demonstrated by the developments of MgxZn1-xO and BexZn1-xO alloys for the larger bandgap materials. Many efforts have been made to obtain DUV LEDs, and promising successes have been achieved continuously. In this article, we review the recent progress of and problems encountered in the research of ZnO-based DUV LEDs.

Keywords:  ZnO      deep-ultraviolet light-emitting devices      MgxZn1-xO      BexZn1-xO  
Received:  22 October 2016      Revised:  27 November 2016      Accepted manuscript online: 
PACS:  77.55.hf (ZnO)  
  78.45.+h (Stimulated emission)  
  78.60.Fi (Electroluminescence)  
  85.60.Jb (Light-emitting devices)  
Fund: 

Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 61425021) and the Natural Natural Science Foundation of China (Grant Nos. 11374296, 61376054, 61475153, and 61604132).

Corresponding Authors:  Chong-Xin Shan     E-mail:  shancx@ciomp.ac.cn

Cite this article: 

Ying-Jie Lu(卢英杰), Zhi-Feng Shi(史志锋), Chong-Xin Shan(单崇新), De-Zhen Shen(申德振) ZnO-based deep-ultraviolet light-emitting devices 2017 Chin. Phys. B 26 047703

[1] Oto T, Banal R G, Kataoka K, Funato M and Kawakami Y 2010 Nat. Photon. 4 645
[2] Watanabe K, Taniguchi T, Niiyama T, Miya K and Taniguchi M 2009 Nat. Photon. 3 591
[3] Schubert E F and Cho J 2010 Nat. Photon. 4 735
[4] Adivarahan V, Heidari A, Zhang B, Fareed Q, Hwang S, Islam M and Khan A 2009 Appl. Phys. Express 2 102101
[5] Zhang Y T, Xia X C, Wu B, Shi Z F, Yang F, Yang X T, Zhang B L and Du G T 2014 Chin. Phys. Lett. 31 058101
[6] Taniyasu Y, Kasu M and Makimoto T 2006 Nature 441 325
[7] Zhong H M, Lu W, Sun Y and Li Z F 2007 Chin. Phys. Lett. 24 2678
[8] Aoyagi Y and Kurose N 2013 Appl. Phys. Lett. 102 041114
[9] Xia X C, Wang H, Zhao Y, Wang J, Zhao J Z, Shi Z F, Li X P, Liang H W, Zhang B L and Du G T 2011 Chin. Phys. Lett. 28 108101
[10] Hirayama H, Noguchi N, Yatabe T and Kamata N 2008 Appl. Phys. Express 1 051101
[11] Sang D D, Li H D, Chegn S H, Wang Q L, Yu Q and Yang Y Z 2012 Appl. Phys. Lett. 112 036101
[12] Wei B, Liu J Z, Zhang Y, Zhang J H, Peng H N, Fan H L, He Y B and Gao X C 2010 Adv. Funct. Mater. 20 2448
[13] Tan S, Egawa T, Luo X D, Sun L, Zhu Y H and Zhang J C 2016 J. Phys. D: Appl. Phys. 49 125102
[14] Reich C, Guttmann M, Feneberg M, Wernicke T, Mehnke F, Kuhn C, Rass J, Laperrade M, Einfeldt S and Knauer A 2015 Appl. Phys. Lett. 107 142101
[15] Goh E S M, Yang H Y, Han Z J, Chen T P, Ostrikov K 2012 Appl. Phys. Lett. 101 263506
[16] Zhou S Q, Wu M F, Yao S D, Wang L and Jiang F Y 2006 Chin. Phys. Lett. 23 1023
[17] Wang Z J, Wang Z J, Li S C, Wang Z H, Lv Y M and Yuan J S 2004 Chin. Phys. 13 750
[18] Zhao F Q, Zhang M and Bai J H 2015 Chin. Phys. B 24 097105
[19] Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T and Segawa Y 1998 Appl. Phys. Lett. 72 2466
[20] Ohtomo A, Tamura K, Kawasaki M, Makino T, Segawa Y, Tang Z K, Wong G K L, Matsumoto Y and Koinuma H 2000 Appl. Phys. Lett. 77 2204
[21] Gruber T, Kirchner C, Kling R, Reuss F, Waag A 2004 Appl. Phys. Lett. 84 5359
[22] Kim W J, Leem J H, Han M S, Park I W, Ryu Y R and Lee T S 2006 J. Appl. Phys. 99 096104
[23] Ryu Y, Lee T S, Lubguban J A, White H W, Kim B J, Park Y S and Youn C J 2006 Appl. Phys. Lett. 88 241108
[24] Su Y Q, Chen M M, Su L X, Zhu Y and Tang Z K 2016 Chin. Phys. B 25 066106
[25] Roessler D M and Walker W C 1967 Phys. Rev. 159 733
[26] Boguslawski P and Bernholc J 1997 Phys. Rev. B 56 9496
[27] Look D C, Claflin B, Alivov Y I and Park S J 2004 Phys. Status Solidi A 201 2203
[28] Thomas M A and Cui J B 2010 J. Phys. Chem. Lett. 1 1090
[29] Shan C X, Liu J S, Lu Y J, Li B H, Ling F C and Shen D Z 2015 Opt. Lett. 40 3041
[30] Liu J S, Shan C X, Shen H, Li B H, Zhang Z Z, Liu L, Zhang L G and Shen D Z 2012 Appl. Phys. Lett. 101 011106
[31] Liu X Y, Shan C X, Jiao C, Wang S P, Zhao H F and Shen D Z 2014 Opt. Lett. 39 422
[32] Liu J S, Shan C X, Li B H, Zhang Z Z, Liu K W and Shen D Z 2013 Opt. Lett. 38 2113
[33] Echresh A, Chey C O, Shoushtari M Z, Nur O and Willander M 2015 J. Lumin. 160 305
[34] Zhu H, Shan C X, Li B H, Zhang J Y, Yao B, Zhang Z Z, Zhao D X, Shen D Z and Fan X W 2009 J. Phys. Chem. C 113 2980
[35] Chu S, Zhao S J, Xiong Z Q and Chu G 2011 J. Nanosci. Nanotechnol. 11 8527
[36] Walker L G and Pratt G W 1976 J. Appl. Phys. 47 2129
[37] Lagerstedt O, Monemar B and Gislason H 1978 J. Appl. Phys. 49 2953
[38] Thomas B W and Walsh D 1973 Electron Lett. 9 362
[39] Xu Y, Li Y P, Jin Y, Ma X Y and Yang D R 2013 Acta Phys. Sin. 62 084207 (in Chinese)
[40] Wang H T, Kang B S, Chen J J, Anderson T, Jang S and Ren F 2006 Appl. Phys. Lett. 88 102107
[41] Hwang D K, Oh M S, Lim J H, Choi Y S and Park S J 2007 Appl. Phys. Lett. 91 121113
[42] Minamim T, Tanigawa A, Yamanishi M and Kawamura T 1974 Jpn. J. Appl. Phys. 13 1475
[43] Chen P L, Ma X Y and Yang D R 2006 Appl. Phys. Lett. 89 111112
[44] Zhu H, Shan C X, Zhang J Y, Zhang Z Z, Li B H, Zhao D X, Yao B, Shen D Z, Fan X W, Tang Z K, Hou X and Choy K L 2010 Adv. Mater. 22 1877
[45] Zhu H, Shan C X, Li B H, Zhang Z Z, Shen D Z and Choy K L 2011 J. Mater. Chem. 21 2848
[46] Zhu H, Shan C X, Li B H, Zhang Z Z, Yao B and Shen D Z 2011 Appl. Phys. Lett. 99 101110
[47] Watanabe K, Taniguchi T and Kanda H 2004 Nat. Mater. 3 404
[48] Koizumi S, Watanabe K, Hasegawa M and Kanda H 2001 Science 292 1899
[49] Nakajima Y, Kojima A and Koshida N 2002 Appl. Phys. Lett. 81 2472
[50] Yoshiki N, Tetsuya U, Hajime T, Akira K, Bernard G and Nobuyoshi K 2004 Jpn. J. Appl. Phys. 43 2076
[51] Jiang W, Zhao S, Xu Z and Zhang F 2008 Displays 29 432
[52] Zhao S, Xu Z, Zhang F, Wang Y, Ji G and Xu X 2009 J. Appl. Phys. 106 0235131
[53] Ni P N, Shan C X, Wang S P, Li B H, Zhang Z Z and Shen D Z 2012 Opt. Lett. 37 15681
[54] Ni P N, Shan C X, Li B H and Shen D Z 2014 Appl. Phys. Lett. 104 032107
[55] Xu T N, Wu H Z, Qiu D J and Chen N B 2003 Chin. Phys. Lett. 20 1829
[56] Khoshman J M, Ingram D C and Kordesch M E 2008 Appl. Phys. Lett. 92 0919021
[57] Wu C X, Lv Y M, Shen D Z, Wei Z P, Zhang Z Z, Li B H, Zhang J Y, Liu Y C and Fan X W 2005 Chin. Phys. Lett. 22 2655
[58] Chang Y S, Chien C T, Chen C W, Chu T Y, Chiang H H, Ku C H, Wu J J, Lin C S, Chen L C and K H Chen 2007 J. Appl. Phys. 101 033502
[59] Zhu Y, Chen M M, Su L X, Su Y Q, Ji X, Gui X C and Tang Z K 2014 J. Alloys Compd. 616 505
[60] Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J and Kim W J 2006 Appl. Phys. Lett. 88 052103
[61] Ryu Y, Lee T S, Lubguban J A, White H W, Kim B J, Park Y S and Youn C J 2006 Appl. Phys. Lett. 88 241108
[62] Ryu Y, Lubguban J A, Lee T S, White H W, Jeong T S, Youn C J and Kim B J 2007 Appl. Phys. Lett. 90 131115
[63] Ganmukhi R, Calciati M, Goano M and Bellotti E 2012 Semicond. Sci. Technol. 27 125015
[64] Chen A, Zhu H, Wu Y, Chen M, Zhu Y, Gui X and Tang Z K 2016 Adv. Funct. Mater. 26 3696
[65] Furno E, Chiaria S, Penna M, Bellotti E and Goano M 2010 J. Electron. Mater. 39 936
[66] Panwar N, Liriano J and Katiyar R S 2011 J. Alloys Compd. 509 1222
[67] Su X, Si P, Hou Q, Kong X and Cheng W 2009 Physica B 404 1794
[68] Yang C, Li X M, Gao X D, Cao X, Yang R and Li Y Z 2010 J. Cryst. Growth 312 978
[69] Yang C, Li X M, Gu Y F, Yu W D, Gao X D and Zhang Y W 2008 Appl. Phys. Lett. 93 112114
[70] Lee H Y, Chang H Y, Lou L R and Lee C T 2008 IEEE Photon. Technol. Lett. 25 1770
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[3] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[4] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[5] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[6] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[7] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[8] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[9] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[10] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[11] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[12] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[13] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[14] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[15] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
No Suggested Reading articles found!